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Abstract (156 words) 

The goal of this design-based research study was the creation and evaluation of a mini-unit 

intended to foster perceptually grounded understandings of the concept of slope in middle-school 

students. Central to this unit was an innovative device designed to create a productive 

pedagogical space between student intuition for steepness and formal definition of slope. Nine 

students from a US middle school engaged with the design in one-on-one video-recorded 

interviews. Analysis of the data indicates that a majority of students appropriated the 

mathematics of slope to support their intuitive judgments regarding steepness. Comparing the 

cases of three students suggests conceptual learning milestones. Overall, the findings show that 

students’ successful coordination of steepness and slope demand that their analytical and 

intuitive constructions be surfaced and integrated multiple times throughout the learning 

experience. To support students in connecting the mathematics of slope to their perceptions of 

steepness, educators should plan for students’ multiple ways of viewing situations involving 

slope. 
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An Embodied Design for Grounding the Mathematics of Slope in Middle School Students’ 

Perceptions of Steepness  

Introduction 

Students can view mathematics as a collection of rote rules and procedures to be 

memorized and reproduced (Diaz-Obando, Plasencia-Cruz, & Alvarado, 2003; Frank, 1988; 

Muis, 2004). On top of this, students may have the impression that their experiences and ways of 

seeing the world are not useful in the mathematics classroom. Whatever the case, to participate 

in broader mathematical practice, and to compete in the global economy, students need to learn 

to see the world through the lens of mathematical artifacts, representations, and tools (Cobb, 

1994). Essentially, this means that their unique perceptions must adapt. The challenge is to 

identify ways in which teachers can support students in understanding mathematical procedures 

while concurrently drawing on students’ ways of seeing the world. To contribute to this, I take a 

pedagogical approach stemming from the constructivist tradition by positing that teachers should 

ground students’ learning by engaging them in activities that enable them to connect their prior 

experiences, intuitions, and understandings to mathematical artifacts, representations, and tools 

(Cobb, 1994; Piaget, 1952, Wilensky, 1997) as a way of enabling them to build mathematical 

meaning upon their personal meaning (Mariotti, 2009).  

The mathematical concept of slope is well suited for this pedagogical approach because, 

when students see two lines, they are able immediately to compare their respective slopes 

without any formal knowledge. For example, students may describe a line with greater slope as 

“steeper,” “faster,” “more difficult,” “more slanted,” “leaning more,” “harder to climb,” or 

“easier to descend” (see the results section for evidence supporting this claim). Additionally, 

humans (as well as other, non-human, animals) have inborn cognitive structures enabling them to 
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discern the relative orientation of lines and other shapes (e.g., Hubel & Weisel, 1963; Geary, 

2012). Yet, if prompted to support mathematically why one line is steeper than the other, 

students must see the lines in radically new ways. They must attend to, and ascertain, the vertical 

(rise) and horizontal (run) distances between two points on each line and then compute their 

quotient (rise over run) as only then, by comparing the slope quotients, might they conclude that 

one of the lines is steeper because it has greater slope (see Figure 1). 

[-- Insert Figure 1 Around Here --] 

Current approaches to slope in schools in the United States 

Slope is an important mathematical topic with implications that extend beyond its uses in 

early algebra. In the US, slope is traditionally introduced in middle-school algebra courses and is 

typically conceived as the constant rate of change of a linear function. As students progress 

through high-school algebra, trigonometry, and calculus, the topic of slope is revisited and 

reconceptualized a number of times. For example, slope can be conceived in terms of a 

geometric ratio (of vertical displacement over horizontal displacement, or rise over run) or as a 

physical property (a property of a line, e.g., “steepness”), or as an algebraic ratio (a change in x 

over a change in y) among others (Nagle, Moore-Russo, Viglietti & Martin, 2013). In this study, 

I emphasize conceptions that might enable middle school students to build personal meaning for 

slope. I therefore limit the focus of this paper to physical and geometric ratio conceptions of 

slope because physical conceptions have potential to leverage students’ perceptual resources and 

connect to students’ understanding of geometric ratio and proportional reasoning—a topic to 

which many seventh grade students have been previously exposed (Common Core Content 

Standards Initiative, 2012; Lamon 2007; Schwartz & Heiser, 2005; Stump, 2001).  

Considering that there are many conceptions of slope, it is no surprise that there are 
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several pedagogical approaches to slope instruction. The canonical approach is to present 

students with a standard algebraic definition—given two points (x1,y1) and (x2,y2) on a line, the 

slope m of the line is 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
—followed by examples and exercises that demonstrate the 

definition (e.g., Schultz, Kennedy, Ellis, & Hallowell, 2004; Holliday, et al., 2008). An apparent 

limitation to this approach is that, by initially introducing slope using predominantly symbols 

and solution procedures, students may not have an opportunity to understand what these symbols 

refer to—they may never ground the meaning of slope in its physical properties (e.g., steepness).  

Other approaches advocate ‘project based’ or ‘open-ended’ problems that foreground the 

physical properties of slope (e.g., Fendel, Resek, Alper, & Fraser, 2009). These approaches guide 

students to discover numerical patterns and generate definitions to signify the steepness of a line. 

Additional approaches emphasize connections between ratio, multiplication, and division 

(Confrey, Scarano, & Hotchkiss, 1995) by introducing the steepness of a line as one of several 

contexts for students to build an understanding of ratio and proportion. Another innovative 

approach presented high school students with the task of designing wheelchair ramps and note 

how height and length properties affect the steepness as well as construct the slope ratio to 

compare ramps (Lobato & Thanheiser, 2002). Though these approaches have shown promise, 

many students learning within existing commonly used approaches, as noted above, struggle 

with proportional reasoning and slope, hindering their progression through algebra and broader 

mathematical practices. 

The Embodied Design Approach 

What distinguishes the approach developed in this paper from many of the existing 

approaches is that the rationale for this work is motivated by the embodied design framework 

(Abrahamson, 2009a; 2014; Abrahamson & Lindgren, 2014), which applies theory in embodied 
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cognition to the design of learning environments. Embodied design investigates ways of creating 

learning interventions that support students’ coordination of tacit and cultural resources to 

develop their mathematical understandings. With the intention of creating a working design to 

ground students’ mathematical understandings of slope in their informal understanding of 

steepness, I utilized a heuristic design framework outlined by Abrahamson (2012) to guide 

students through a three-step learning trajectory: (a) elicit students’ informal judgments of a 

situation (e.g., “that ramp looks difficult to climb”), (b) guide students to attend to 

structural/perceptual/quantitative aspects that they had not noticed before (i.e. the “rise” and 

“run” of “rise over run”), and (c) support students as they experience cognitive conflict and 

eventually reformulate their initial judgments using mathematical inscriptions that they generate 

and appropriate.  

When asked to compare the slope of the two lines, students can readily identify the line 

that mathematicians would recognize as having a greater slope (see results section for evidence 

supporting this claim). In practice, students offer informal comparisons of the lines, describing a 

line as being “steeper,” “harder to climb,” “faster,” or “more straight.” At the same time, those 

students may not be able to articulate why they selected that line. It has been suggested that this 

type of unarticulated, tacit judgment is an ability that has evolved over time, whose inner 

workings are invisible to the learner (Geary, 2012; Gelman & Williams, 1998). Humans tacitly 

tap these perceptual resources to perform effortless, unambiguous goal-oriented construction of a 

situation prior to any explicit interpretations and inferences (Schwarz & Heiser, 2005). Thus 

students have an intuitive perceptual basis for making sense of the mathematics of slope. 

However, to express informal judgments of slope (e.g., “steepness”) mathematically, 

students must think analytically. They must attend explicitly to the vertical and horizontal 
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distances (“rise” and “run”) between two points on a line, measure these properties using a 

conventional measurement system (e.g., inches or centimeters), and finally compute the quotient 

of rise over run.  

Yet it is only after students have calculated the slope and connected it with their naive, 

synoptic notions of steepness that it could be inferred that they have a deep and connected 

understanding of the mathematical concept (Wilensky, 1997). At the culmination of this 

pedagogical process, students can be guided to reconcile their intuitive notions of steepness with 

the mathematics of slope as students are guided to see the mathematical inscription as meaning 

their intuitive judgment, which is taken as evidence that connections have been made 

(Abrahamson, 2009b; Radford, 2003). For example, Abrahamson (2009a) provides a case study 

of a sixth grade student, Li, as he aligned his perceptions of chance with mathematical 

representations of probability. This process culminated in a moment when Li used a probability 

quotient to refer to his initial judgment about the likelihood of drawing marbles from an urn. 

Similar to this, I seek to support students in using slope quotients to refer to their initial 

judgments of steepness, thereby viewing the mathematical inscriptions as meaning their intuitive 

judgments of steepness. It should be mentioned that the formation of a grounded mathematical 

understanding is not a linear, single-step process; it involves revisiting intuitive and analytical 

ways of seeing many times (e.g., Zazkis, Dubinski, & Dauterman, 1996), and individuals can 

waver back and forth between perspectives as they attempt to resolve central ambiguities or 

“cognitive conflicts” that arise in the situation.   

Reconciling Cognitive Conflicts 

Not all ways of seeing a mathematical or physical situation are necessarily helpful for the 

learning of conventional mathematics (e.g., Cobb, 1989; Fischbein, 1987). Suppressing 
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unproductive intuitions and fostering mathematically normative perspectives can come about by 

resolving cognitive conflict—a sense of ambiguity or uncertainty produced when people are 

confronted with information that conflicts with their prior conceptions, beliefs, or perceptions 

(e.g., Limón, 2001; Piaget, 1975; Zaslavsky, 2005). Cognitive conflict is used as a teaching 

strategy to shift learners’ prior conceptions by presenting them with situations that create 

uncertainty, expose contradictions in their initial conceptions, and support them in reconciling 

those contradictions by restructuring their knowledge and adopting conventional mathematical 

perspectives (e.g., see Laborde, 1994; Swan, 2001; Zaslavsky, 2005).  

Cognitive conflict can also be perceptual in nature. People can be confronted with new 

ways of looking at a situation, usually with instructor guidance, and the ambiguous tension 

created by old and new ways of seeing can drive mathematical learning (e.g., Abrahamson, 2009; 

Stevens & Hall, 1998; Trninic & Abrahamson, 2012). For example, a student who initially views 

the slope of a line using holistic judgments of steepness might be guided to pay attention to 

vertical and horizontal rise-run components of the line. When students come to view lines in this 

new way, they may experience an ambiguous tension between steepness-based and rise-run 

based constructions of lines, and this cognitive conflict might drive the calculation and 

interpretation of slope quotients in order to reconcile the two perspectives. Learning may thus be 

framed as a shifts in how and what individuals attend to perceptually, that is, people develop 

expertise in mathematics through intentional noticing (e.g., Mason, 2002) or by acquiring 

disciplined perception of physical and mathematical objects (Stevens & Hall, 1998), and as 

people learn to view situations in new ways, they can incorporate mathematical procedures as a 

means of reconciling a multiple ways of viewing a situation (Abrahamson, 2009b).  

To support learning through the resolution of cognitive conflict, teachers are often 
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recommended to approach instruction by (a) assessing students’ existing knowledge and 

understandings, (b) offer a task focused on a particular conceptual obstacle to expose common 

ways of seeing that are not aligned with the targeted content, (c) elicit students’ reflection on 

inconsistencies by asking open-ended questions, and (d) support students in resolving cognitive 

conflict through articulation, discussion, and reformulation of concepts and procedures (Swan, 

2001; Zaslavsky, 2005). As such, I aimed to create an embodied design that would acknowledge 

students’ existing intuitive perceptions of sloped lines, challenge their intuitive perceptions of by 

presenting them with alternate ways of looking at the same situation (i.e., in terms of rise and 

run), and support them in reconciling these different perspectives by engaging with their 

environment, articulating conflicts, and ultimately incorporating slope calculation procedures as 

a means of resolving differences between intuitive ways of seeing and mathematical 

perspectives. 

In sum, the epistemological and pedagogical premise of this study is that students build 

personal meaning for conventional mathematics through the coordination of tacit and formal 

knowledge. Studies have previously taken this approach to explore student learning of 

probability (e.g., Abrahamson, 2009a), but few studies, if any, have applied this approach to the 

concept of slope. My research questions are as follows: Can students understand the rise-over-

run procedure inherent to the mathematics of slope in terms of their perceptual sense of 

steepness? Furthermore, how might instructors support students as they engage with an 

embodied design to understand the rise-over-run procedure without losing the synoptic sense (of 

steepness)? 

This study is an effort to take on these questions. At its broadest, the rationale of this 

study was to create an embodied design that would elicit students’ perceptual judgments of 
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steepness, then prompt them to support these judgments mathematically. 

A Design-Based Research Approach to the Study of Math Cognition and Instruction 

The objective of this study was thus twofold—to both understand and affect the teaching 

and learning of slope. Therefore, I adopted a design-based methodological approach (e.g., see 

Brown, 1992; Collins, 1992; Confrey, 2005). Design-based research is different from 

experimental studies that aim to isolate and test specific variables. Instead, the intervention itself 

can be viewed as an important outcome of the study in that the ultimate goal is to produce 

relevant theory and instructional designs that can be shared and developed with practitioners 

(e.g., see Confrey, 2005; The DBR Collective, 2013). As is characteristic of design-based 

research studies, I iteratively implemented and revised an innovative instructional intervention 

that could ultimately be adapted to introduce the concept of slope in full classroom settings. The 

end result of the study—an embodied design for teaching slope—could become a part of math 

teachers’ curricular repertory for introducing the concept of slope. 

Methods 

As is characteristic of projects conducted in the design-based research approach, my 

assumptions about cognition and learning, as applied to the specific targeted content, developed 

recursively. That is, the analyses of accumulating empirical data, and the resulting modifications 

to the theory, in turn, directly informed modifications to my design (see Collins, 1992; Confrey, 

2005; The DBR Collective, 2013; DiSessa & Cobb, 2004). As explained in the introduction and 

operationalized below, the design aimed to elicit students’ intuitive notions and support students 

in forging meaningful connections between these intuitions and the mathematical content 

embedded in the design. Accordingly, learning was characterized as student development of 

connections between these intuitive and mathematical notions. All along I am cognizant that, just 
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as the design may have enabled some learning, so its limitations may have constrained yet more 

learning. Therefore, any evaluation of student learning is an evaluation of design and instruction. 

Participants 

After seven pilot interviews with 7th grade students, nine middle school students (eight 

7th-grade, one 8th grade) engaged in 45-minute semi-structured interviews. The nine participants 

in the main study were enrolled in a small 489-student, urban middle-school in Northern 

California. Participants were representative of school demographics (five males, four females; 

four African American, two Latina/o, one Asian-American, two other or unknown ethnicity; 

three ESL; and three eligible for free or reduced lunch). 

Five of the nine participants were recruited from the lead investigator’s 7th grade pre-

algebra class, three 7th grade students from another pre-algebra course, and the 8th grade student 

from an Algebra course. At the time that the study was conducted, students in the 7th grade pre-

algebra courses had not encountered slope in the curriculum, though the 8th grade student had. 

Acceptance into the study was based on students’ return of parent consent forms prior to the 

interview. No screening was administered. The primary researcher along with two undergraduate 

student assistants and one graduate assistant contributed to an ongoing process of designing and 

modifying the materials and interview protocol, conducting the interviews, and assisting with 

collecting, archiving, and analyzing the interview data. Of the nine interviews, the lead author 

conducted five, the remaining four were conducted by student assistants. 

Materials 

The learning materials and interview protocols were iteratively developed, implemented 

in one-on-one settings, and revised over the course of three pilot studies before finalizing the 

materials for the fourth and final design (for an evolution of the design, see Appendix A).  
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Iterative pilot studies. The first three design iterations involved me as the researcher 

conducting pilot interviews with an emerging interview protocol and learning materials. For each 

of the three pilot studies, I conducted audio-recorded interviews with two or three 7th grade 

students (seven pilot-interviews total). After each iteration had been completed, audio-recordings 

were analyzed and conclusions were used to modify and improve the learning task and to test 

emerging hypotheses about how students might be supported in connecting their perceptions of 

steepness with mathematical representations of slope (Cobb, Confrey, DiSessa, Lehrer, & 

Schauble, 2003; The Design-based Research Collective, 2003). Early prototypes made use of 

more traditional mathematical representations; students were prompted to make intuitive 

judgments about line segments on a coordinate grid before computing and comparing slope 

quotients. However, initial pilot testing revealed that traditional mathematical approaches tended 

to prime students to initially view the learning materials in terms of prepackaged mathematical 

interpretations rather than from their intuitive judgments. Subsequent design revisions were thus 

built to make the property of steepness stand out to students initially, and to incorporate “ramps” 

made of wood intended to evoke students’ sense of steepness, which eventually evolved into the 

fourth and final design, which I will refer to as the “slope-meter design.”  

Slope-meter design. The slope-meter design was the focal mathematical instrument 

developed for the study and consisted of a wooden pair of perpendicular coordinate axes joined 

at the origin, each of length 17 inches, with detachable ramps of various fixed lengths which 

could be affixed into notches cut at regular intervals (see Figure 2). Students interacted with four 

different ramps of varying lengths, but no more than two at a time. Paper, pencils, markers and 

calculators were made readily available, and students were repeatedly encouraged to make use of 

them to assist their thinking. This instrument along with tasks outlined in the interview protocol 
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were designed to elicit students’ tacit notions of steepness as grounding for the mathematics of 

slope.  

[-- Insert Figure 2 Around Here--] 

 

Rationale and Procedure 

I assumed that, prior to the interviews, students would have an intuitive sense for which 

of two ramps would be steeper and have some formal classroom experience reasoning with 

proportions—given that students in the US are typically presented with instruction on 

proportional reasoning well before 7th grade (Common Core Content Standards Initiative, 2012). 

As such, the rationale for the instructional intervention was that students might be guided to view 

and compare ramps such that the steeper inclines could be construed and experienced as 

requiring greater climbing effort. Students were then to associate the effort evoked by the slopes 

with the rise/run quotients calculated from these same slopes (e.g., the steeper of the two inclines 

would be measured as bearing a rise of 7 units for a run of 10, thus bearing a slope of 7/10 or .7, 

whereas another slope was marked as 4/10 or .4). By noting that the steeper of two inclines was 

associated with the greater slope quotient (e.g., .7 > .4), students were to ground the 

mathematical inference in their tacit judgment and retroactively to interpret the derivation 

process as sensible. I expected that students would initially perform the measuring and 

calculation process in a somewhat perfunctory manner and would ultimately imbue this process 

with meaning only once the measurement and calculations were completed and the derived 

values compared. Moreover, I expected that students would need guidance to attend to 

mathematically critical dimensions—namely the rise and the run—and require support in 

coordinating their initial judgments with mathematical reformulations. The overarching goal of 

the interview protocol and design was to incite cognitive conflict by contrasting two ways of 
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looking at the ramps—steepness-based and rise-run based perspectives—and resolving those 

ambiguous tensions by calculating slope quotients and interpreting them in terms of steepness.  

The procedures outlined in the interview protocol were intended to align with this 

rationale (see Appendix B for the complete interview protocol). The interviewer first presented 

participants with the slope-meter design, initially with one ramp steeper than the other, and asked 

questions like “What do you think this is?” to gauge their initial reactions to the artifacts and 

establish a common vocabulary for the wooden ramps and axes. The interviewer then asked 

questions to orient the students’ view towards the ramps’ steepness property and elicit their 

explanations for how one ramp was steeper than the other by asking questions such as “What do 

you notice about these ramps?” and “What if you were walking up them?”  

The interviewer then guided students to attend to horizontal and vertical distances 

between points on the ramps by inviting them to directly manipulate the ramp in order to change 

it to be “steeper than” or “less steep than the other ramp,” and calling their attention to aspects 

that had changed during the manipulation (i.e. the rise and run) by asking “what did you 

change?” Students were then asked to adjust the two ramps, which were of different length, so as 

to have the same steepness. I assumed that students would intuitively determine that ramps were 

the same steepness when in a parallel configuration. Upon creating this configuration, students 

were invited to enumerate rise and run when asked, using the language of the student, how tall or 

wide the ramps were. Then students were asked to “make a drawing of the situation.” 

Once students had created a representation of the situation (see Figure 3 for an example), 

the interviewer utilized the representation to consider additional hypothetical parallel ramps, 

specifically inviting students to determine the “rise” for a ramp in cases where its “run” was 

known (e.g., the interviewer asked “If we wanted to build a ramp with a width of 3 units, but 
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exactly as steep as the other ramps, what would the height need to be?”). I assumed that students 

would use salient information from their representation to formulate multiplicative or additive 

mathematical rules. For example, since this task was introduced when the slope of ramps were 

equal to two, I expected that students would notice that the “run” was half the “rise” for both 

ramps, or that the “rise” was double the “run,” or use repeated addition and note that adding the 

“run” to itself gives the “rise.” I also assumed that students might incorrectly infer that ramps 

with equivalent steepness have a fixed difference between them, in which case the interviewers 

were prepared to ask students “Can you show me what this ramp would look like?” to direct 

students toward constructing predicted ramps with the slope-meter design and observing directly 

that such a rule would generate ramps of different steepness. This task began with hypothetical 

ramps that could be built or visualized using the slope-meter design (if interviewers felt that the 

student needed assistance visualizing hypothetical ramps, a straight wooden rod was given to 

them to represent ramps of various lengths). As students progressed, the interviewer introduced 

values for the “run” that went beyond what could be immediately perceived (e.g., a hypothetical 

ramp with a run equal to 100 units), in an attempt to encourage students to consider numerical 

patterns as a means of arriving at an accurate prediction. After students had represented several 

ramps of the same steepness, along with their respective measurements for rise and run, they 

were guided to compare pairs of numbers with questions such as, “how are these numbers 

related?” the hope being that students would notice consistent multiplicative relations between 

rise-run pairs. If students did not observe relations, they were asked increasingly more specific 

questions such as “how is 4 and 8 related to 5 and 10?” and ultimately were directed to divide the 

rise by the run.  

To guide students to reformulate their initial sense of steepness in terms of the slope, the 
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interviewer asked students if the slope quotients “had anything to do with the ramps,” and 

assessed whether students inferred that the ramps had the same slope because they have the same 

steepness. Whether or not the student made this observation, the interviewer would then 

introduce a new ramp, affix it into the axes such that its steepness was greater than the previous 

ramps, and asked the student to calculate the slope of the new ramp. Finally, the interviewer 

asked students again if the slope quotient “had anything to do with the ramps,” to determine if 

students noted that the steeper of two inclines was associated with the greater slope quotient. If 

the student drew inferences from the slope of the line to the steepness, the interviewer would 

conclude the interview. If not, the interviewer would use any remaining time to revisit previous 

stages of the protocol that they thought might support students in making a relevant connection. 

Data Collected 

In all, there were sixteen interviews: seven pilot interviews and nine primary interviews. 

Each of the nine primary interviews was video recorded and transcribed. The average primary 

interview was 42 minutes in duration with a standard deviation of 9 minutes. The inscriptions 

that students generated during the interview were also collected for further analysis. 

Analysis Techniques 

Video footage and students’ written work were triangulated and coded for varying 

dimensions of student thinking and used to measure the extent of student learning. Consistent 

with other studies conducted in using the embodied design framework (e.g., Trninic, 

Abrahamson, 2012, Abrahamson, 2009a), I conducted microgenetic analyses (Siegler & 

Crowley, 1991) to identify and typify ways in which students understood and described 

steepness, whether they formed connections between slope and their sense of steepness, and the 

depth to which they found a connection. Microgenetic methods also emphasize the framing of 
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student actions as responses to their situated context, and focus analysis and reflection on the 

learning intervention as well as prompts introduced by the instructor, informing subsequent 

design revisions to the instructional design and instructional interview protocol and contribute to 

better understanding how instructors might support students in such endeavors (Abrahamson, 

2009a). 

Cases were then constructed and compared to identify milestones in student learning, 

potential pitfalls, and teacher prompts that were instrumental therein. Cases were framed and 

compared in terms of variations in student learning trajectories as evidenced in speech and 

physical interactions with the slope-meter design. Particular attention was given to the final 

segments of the interviews where students were probed for connections between their 

understandings of steepness and slope, and the depth to which they found a connection. Namely, 

I sought to identify instances where participants appropriated and used the mathematics of slope 

as a means of referring to their intuitive judgments of steepness and interpreted such instances as 

evidence that a connection had been made (c.f., Abrahamson, 2009b; Radford, 2003). 

Findings and Discussion 

In this section I present my findings regarding students’ understandings of rise and run 

via three empirical cases to support these claims. I highlight processes in which students 

established connections between steepness and slope while engaging with the slope-meter design 

and ways in which the interviewer supported these connections. Broadly, these findings indicate 

that all 9 of 9 interviewees correctly and quickly identified the steeper of two ramps and that the 

majority (6 out of 9) of the students appropriated slope as a means of referring to their initial 

intuitive judgments of steepness. In what follows I present and compare three case studies to 

elaborate on how students came to adopt slope as a mathematical means of supporting their 
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perceptions of steepness and consider key statements from the instructor throughout. 

Qualitative Findings 

Three cases were chosen to highlight dimensions of student thinking that were 

representative of the nine primary interviews. In particular, I indicate specific ways in which 

students perceived the slope-meter design, how the students came to use rise, run, and slope to 

support their initial judgments and how they were encouraged by the interviewer to utilize 

conventional mathematical means. Two of the cases showcase students that successfully 

coordinated their intuitive constructions of steepness with the mathematics of slope, while the 

third illustrates the case of a student that did not. The “success rate” presented in the case studies 

(2 of 3), was chosen to be proportional to that of the sample (6 of 9). In all cases, students (1) 

articulated their initial perceptual judgments, (2) attended to “rise” and “run,” (3) discovered 

mathematical rules, and in two out of the three cases, (4) established connections between 

steepness and slope by using slope as a means of referring to their initial sense of steepness (see 

Table 1 for a summary). I end with an evaluation of the design framework in light of pedagogical 

affordances and constraints for mathematics teachers. 

[--Insert Table 1 Around Here--] 

The Case of Lucia. Lucia was a 7th grade student who was learning English as a second 

language and was characterized by her teachers as a modestly achieving student. At the time of 

the interview, she was enrolled in a pre-algebra course that was taught by the lead investigator. 

The interviewer (in this case, a graduate student assistant), initially asked Lucia what she noticed 

about the slope-meter design, to which she replied, “Is this supposed to be math? Is it like half of 

something? Or is it just that?” This remark suggests that she sees the design as half of a larger 

object, such as a the remaining quadrants of a coordinate axis, and that she was unsure whether 
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to view the object through a mathematical lens or as a block of wood per se (see Uttal, Scudder, 

DeLoache, 1997).    

To guide Lucia to notice steepness, the interviewer asked her to imagine herself walking 

on the ramps, to which she described the steeper ramp as more “difficult because it’s like almost 

straight,” (key utterances underlined). 

Researcher: So can you imagine yourself, a little, little person walking this way, and you 

want to walk up this ramp [gestures up the longer, but less-steep ramp] or would you 

want to walk up this one [gestures up steeper, shorter ramp]? 

Lucia: It would be difficult because it’s like almost straight. 

R: So you are saying that if this was a ramp and you were a tiny little person walking up 

this way, what if I started walking up this one right here [gestures up less-steep ramp]? 

L: Then it would be pretty easy. 

In this interaction, the interviewer elicited Lucia’s sense of steepness by asking Lucia to 

imagine herself walking on the ramps, which she described in terms of how “difficult” or “easy” 

the ramps are to climb. Like Lucia, many of the interviewees initially conceptualized steepness in 

terms of the physical exertion required to walk up the ramps. 

When asked to make the larger ramp “more difficult,” without much thought she 

increased the incline such that the ramps were parallel. When asked what she noticed about these 

parallel ramps, she commented that “they are the same, but that one [gazes towards larger ramp] 

is higher.” A clarifying question from the interviewer revealed, “I guess they are the same steep, 

but one is taller [gestures towards the y-axis].” When asked to explain whether “anything else 

about the ramps had changed,” she mentioned, “I guess it also covers less ground.” 

[--Insert Figure 3 Here—] 
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When explicitly asked to measure how “tall” and how “wide” each of the two ramps 

were, Lucia quickly counted the notches on the axes and noticed the underlying ratio between 

height and width. “Two, four. Four and eight, so this [indicating smaller ramp] is smaller by two. 

No [3 second pause], smaller cause it’s like pretty much the half. This one [indicating the height 

with her finger] is half [of the horizontal distance] for both [ramps].” Throughout the interview, 

Lucia used the term “the half” to refer to the mathematical rule that she discovered when 

comparing rise and run measurements. Lucia thus made a perceptual inference (both ramps have 

the same steepness) which motivated her to create a mathematical rule to describe her initial 

judgment (both ramps fit “the half” rule). 

Lucia was later shown two new ramps and was guided to calculate the slope of both by 

computing a ratio of rise over run. One ramp had a slope of 2.0, and the other a slope of 4.0. The 

following interaction occurred after Lucia had calculated the slopes. 

R: So do these numbers tell us anything about how hard it would be?  

L: …when it’s bigger it’s, well, when it’s bigger it’s like really hard and when it’s little, 

like a two or a one, it means it’s hard but not that hard. 

In this dialogue, we see that Lucia uses the magnitude of the slope quotients in order to 

refer to how “difficult” the ramps are to climb, which can be taken as evidence that she had 

formed a connection between the two. Lucia’s intuitions about steepness, as embodied by her 

sense of exertion, guided her exploration of slope. To reconcile her intuitive constructions of 

steepness with the formal mathematics of rise, run, and slope, Lucia searched for a rule that 

would enable her to support her sense of steepness. She discovered an intuitive rule which she 

used to order the within-ramp quotients (i.e., more slope means more steep, see Stavy & Tirosh, 
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1996). At the critical moment, Lucia can be said to have utilized slope as the discursive means of 

speaking mathematically about her intuitive judgment of steepness (Abrahamson, 2012)—she 

forged a connection between slope and steepness by using the former to refer to the latter. 

The Case of Sarat. Sarat was an 8th grade student and was characterized by his teachers 

as high achieving. Unlike other students in the sample, Sarat had been formally introduced to the 

concept of slope in his algebra class. Sarat was enthusiastic and initially commented on the 

slope-meter design from various imaginative perspectives. When the interviewer (a graduate 

student assistant) asked “What do you think this is?” he replied by saying, “Is it a catapult?” then 

used his fingers to walk up the ramp, proclaiming “Look, I’m walking up it!” Then moments 

later “it’s a race car track that cars drive down.” When asked to comment on the difference 

between the two ramps, he replied that, “One is longer than the other.” In order to show their 

difference in length, he lifted the ramps and set them side by side. The total length of the ramps 

(an aspect that is not particularly useful for constructing steepness or slope) tended to be a salient 

feature for many students, and was particularly salient for Sarat, as we will see. 

To encourage Sarat to attend to the steepness of the ramps rather than the length, the 

interviewer asked, “How else might you compare these?” to which Sarat replied “One is leaning 

straight, and the other is wider. One is like this [postures his arm to a steep incline] and one is 

like this [decreases incline of his arm]. A car would go really fast on this one [pointing to the 

steeper ramp].” When asked if he could “think of another word” he eventually agreed that “one 

would be “steeper” than the other.  

To encourage Sarat to attend to rise and run properties of the ramps, the interviewer 

asked him to decrease the steepness of the ramp and comment on what changed during the 

process. Sarat was easily able to adjust the ramps, commenting, “I changed the hill...” and later 
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“...the height…. oh, and it got longer... the length, it got longer, and the height got less.” Here 

Sarat began to use the term “length” and “longer” to refer to horizontal distances of the ramp’s 

end from the origin and “height” to refer to the vertical distances from the origin (see e.g. his 

abbreviated use of the term “length” and “height,” written as “L”  and “h” in Figure 4).  

The interviewer then asked Sarat to adjust the ramps to be the “same steepness,” and 

Sarat increased the incline of the ramp so that it was parallel to the others. When probed further 

about his meaning of sameness, Sarat dove into the numbers. When asked to show how the 

ramps are the same steepness, Sarat used his finger to count the magnitude of the x- and y-

intercepts of both ramps. Upon obtaining an x-intercept of two and y-intercept of four for one 

ramp, and four and eight for the second ramp, Sarat exclaimed “Multiples of two! … This is two 

[points to the x-intercept of the shorter ramp], and two times two is four [indicates the y-intercept 

of the shorter ramp]. This is four [indicates y-intercept of the larger ramp], and four times two is 

eight.” Initially Sarat saw the ramps as equally steep and upon measuring the x- and y-intercepts, 

he noticed a mathematical rule (height is twice the length for each parallel ramp). Sarat 

appropriated this arbitrary rule to account for the “sameness” that he had initially perceived 

between ramps. The interviewer then asked Sarat to again measure the height and length and 

asked him to make a drawing of the situation (see Figure 4).  

[--Insert Figure 4 Here--] 

 

Upon creating his detailed representation of the slope-meter design, Sarat was asked to 

determine unknown y-intercepts for given x-intercepts for ramps of the same steepness. Right 

away, Sarat began performing many calculations without directly interacting with the ramps. He 

used the “multiples of two” strategy that he arrived at earlier to calculate several unknown 

“heights” for given “lengths” of parallel ramps. After arriving at several pairs of height and 
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length, Sarat was explicitly asked to divide the height by the length for each ramp, and so Sarat 

calculated the slope for each of the parallel ramps. In his final calculations he noticed that, “Four 

divided by two, is two. Eight divided by four, is two, and six divided by three is two.”  

At this point, the interviewer asked Sarat, if the numbers had “anything to do with the 

boards,” to which Sarat responded, “They’re different lengths [holding the two boards side by 

side].” When probed for a perceptual connection, Sarat folded back to his initial constructions of 

the ramps (i.e. the total length). Again, when Sarat was asked to calculate the slope for a new 

pair of ramps—one of slope 2 and another of slope 4—and asked if the numbers “have anything 

to do with the boards,” Sarat said, “They’re different lengths [holding the two boards side by 

side].” 

The interviewer then started from the beginning and encouraged Sarat to attend once 

again to the steepness of the objects by orienting the ramps in a new configuration and asking, 

“Which one is steeper?” Suddenly, Sarat began to realize relationships between the height, 

length, and the steepness that he had not observed previously. For example, while holding and 

rotating a ramp downward, he mentioned that, “If it keeps going down, it’s going to get less 

steep, and if this keeps going up and it gets steeper…” and also, “…if [the length is] less, then 

it's steeper, and if it's longer then it's not as steep.” Sarat was then asked by the interviewer to 

repeat his measurements of rise and run and calculate slope once again for ramps in the new 

configuration. This time, though, Sarat began relating the available quantities to the ramp’s 

steepness, initially comparing a ramp with rise 8 and run 2 and another with rise 9 and run 3 by 

saying “Two and eight is steeper than three nine because they have the lowest numbers.” As 

suggested here, interestingly, Sarat committed several “additive errors” during his second but not 

his first run through the procedures by inferring that smaller rise or run numbers correspond with 
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greater slope. The interviewer continued additional ramp comparisons and slope calculations, 

and at one point asked which ramp would be steeper, a ramp with rise 14 and run 2 or a ramp 

with rise 15 and run 3. Sarat responded, “If you divide these two, three fifteen is five. This one is 

seven, and seven is greater than five, so it’s steeper.” After generating many mathematical rules 

and inferences, Sarat ultimately used the slope quotients to draw a conclusion about his initial 

sense of steepness. 

This case illustrates the non-linear learning path that students sometimes took during their 

interactions with the slope-meter design and suggests that, even though students may attend to 

steepness at one moment, they tend to set aside this way of seeing as they transition into 

mathematical views. At one moment, Sarat spoke of the ramps with words like “faster” and 

“steeper,” but as he attended to rise and run and calculated slope, his sense of steepness seemed 

to have been suspended. When asked to comment on how the quantities related to the situation, 

Sarat refocused on the original situation, referring to the length of the ramps as an index of their 

steepness. Upon performing the rise-run procedure a second time, however, Sarat appeared to 

have sustained an image of steepness of the ramps and was thus able to see rise, run, and slope as 

relevant means to describe his initial judgment of steepness (cf., Abrahamson, 2009b). This 

back-and-forth work appears to be crucial to Sarat’s successful coordination of visual and 

analytic conceptions of the slope-meter design (Zazkis et al., 1996). 

The Case of Damon. Damon was a 7th grade student who was characterized by his 

teachers as a low achieving student and was enrolled in the pre-algebra course taught by the lead 

investigator. When prompted by the interviewer (the principal investigator) to comment on the 

slope-meter design, Damon mentioned that “one [ramp] is longer than the other one,” and also 

that “one [ramp] is steeper.” When probed further, Damon compared the ramps based on the 
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speed at which one falls down them, “[indicating the steeper ramp] you fall, you just fall like on 

the ground [sliding a marker quickly down the ramp], but on this one [indicating longer, less 

steep ramp] you fall, you roll [sliding marker slowly down the ramp] onto the ground.”  

When asked to make the ramp less steep, Damon did so remarking, “I made it longer on 

top [gesturing towards the horizontal axis], shorter on the bottom [gesturing towards vertical 

axis].” Damon’s strange vocabulary (“top” referring to the horizontal axis, and “bottom” 

referring to the vertical axis) may reflect his initial association between the horizontal axes being 

the top surface of a bridge and the “bottom” being a complementary term. The language was 

troubling for the interviewer, though for Damon it was perfectly natural considering that he used 

the language consistently throughout the interview.  

Damon was then asked by the interviewer to measure the rise and run for both ramps and 

to make a drawing of the situation, for which he created the tabular representation shown in 

Figure 5. The tabular representation that Damon created was useful for him, because it organized 

the numerical values of rise and run (labeled as “down” and “top”). His representation suggests 

that rise and run were particularly salient for him. Conversely, the table suggests that Damon was 

not attending to the steepness of the lines, because they are not present in his representation.  

[--Insert Figure 5 Here--] 

Damon was then prompted to predict y-intercepts given x-intercepts of parallel ramps. He 

initially used an additive rule to arrive at incorrect predictions, but when asked to physically 

represent a predicted ramp using a wooden rod and compare it with the two parallel ramps set in 

the slope-meter, he noticed that his prediction did not look right. With support from the 

interviewer, Damon positioned the rod to be parallel to the ramps, obtain correct predictions for 

y-intercept, and eventually discovered a new rule (double the run to get the rise). He was then 
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asked explicitly to divide rise and run to obtain the slope of many ramps in parallel. When asked 

to calculate the slope for two ramps—one with slope 2 and another with slope 4—then asked to 

comment on why one appeared different from the other. Damon replied, “It’s different for this 

one because—can I move this? [aligned ramps to compare their length]—Cause if you compare, 

this one [indicating ramp that previously had smaller slope] is much shorter. This one is shorter it 

just changes, I don’t know how, it just changes.” In this portion of the interview, Damon used 

slope to compare the length of the ramps, suggesting that he was no longer attending to the 

steepness of the ramps.  

This was a case where a student, who was initially able to judge the steepness of the 

ramps, was later successfully guided to attend to rise and run aspects of the ramps yet was unable 

to depart from that orientation of view. This was apparent in his descriptions and in his 

representation of the slope-meter design, neither of which indicated that Damon was attending to 

the steepness of the ramps. 

Comparative Discussion 

These three cases were selected to highlight a range of learning trajectories as the 

interviewer guided students to connect their intuitions of steepness with the mathematics of 

slope. All three students made perceptual judgments, attended to and measured features of the 

ramps that they had not initially noticed, and searched for mathematical patterns, yet whereas 

Lucia and Sarat forged connections between slope and steepness, Damon did not. Lucia 

successfully coordinated her intuitive sense of ‘difficulty’ with slope quotients by moving back 

and forth between her intuitive sense and the formal mathematics several times throughout her 

learning trajectory, ultimately interpreting larger slope quotients as meaning that the ramp is 

‘harder’ to climb. Sarat quickly formulated a rule, yet completed many mathematical procedures 
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without consulting his intuition, and eventually needed guidance re-eliciting his initial sense of 

‘steepness’ before making a connection between his mathematical rule and his intuition, 

explaining that larger slope quotients correspond with ‘steeper’ inclines. Damon was initially 

able to judge the ‘steepness’ of the ramps, yet upon taking measurements, was unable to divert 

his attention from vertical and horizontal distances from the origin. This is likely because Damon 

did not revisit his initial sense of steepness, while Lucia and Sarat partook in the ‘back and forth’ 

work that is appropriately useful when coordinating mathematical and intuitive constructions 

(e.g., Zazkis, et al., 1996). 

Furthermore, all three students initially described the ramps in terms of their embodied 

sense of exertion. Upon changing the incline of the ramps and reflecting upon “what changed,” 

all three students began to notice aspects of the ramps in relationship with horizontal and vertical 

distances from the origin. It should also be mentioned that Lucia and Sarat appropriated slope as 

a discursive utility only when their interpretation of slope resonated with their perceptual 

judgments of steepness. These findings are similar to the case of Li in Abrahamson (2009a), who 

was only able to coordinate his perceptual judgments of ‘chance’ with the mathematics 

representation of probability after he had determined a way of perceiving his mathematical 

results such that it evoked the same inference as did his initial judgment. 

Conclusions and Implications 

I investigated whether students would be able to establish connections between their 

intuitive constructions of steepness and the mathematics of slope and examined supports 

provided by the interviewer that were pivotal in this process. I found that a majority of the nine 

students that engaged with the slope-meter design were able to forge such connections as they 

were guided to attend to steepness of ramps, attend to “rise and run” features of the ramps, 
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compute slope, and comment on whether slope and steepness are related. Moreover, three case 

studies suggest that students’ successful coordination of steepness and slope demanded that their 

analytical and intuitive constructions be surfaced and integrated multiple times throughout the 

learning experience, which was supported by interviewer prompts to revisit initial judgments of 

steepness during calculations. This process culminated in a moment where students came to 

describe the steepness of the ramps in terms of computed slope quotients, namely they came to 

see that the ramps had different steepness because their slopes were different. These findings 

provide evidence that slope can enable students to explain their initial perceptions of steepness 

mathematically. 

Implications 

It was clear from the three cases—which are representative of learning trajectories 

identified in the nine primary interviews—that students’ intuitions about relative length and 

steepness guided their exploration of rise, run, and slope. However, the case in which the student 

did not complete the tacit-to-mathematical synthesis highlights important tradeoffs that educators 

should consider when taking on this intuition-to-inscription framework.  

Refresh intuition regularly. In order for students to connect steepness and slope, 

teachers must highlight aspects of a situation that students had not noticed before, meaning that 

students must temporarily set aside their initial ways of seeing in order to attend to these new 

properties. Yet, upon learning mathematical procedures, teachers must revive students’ initial 

notions for a connection to be made. This back and forth work appears to be essential (e.g., 

Zazkis et al., 1996). Students in my sample who measured and manipulated values of rise and 

run but did not periodically reflect on their connections to the object tended to have more 

difficulty building personal meaning for slope. I thus wish to emphasize the importance of the 
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role of the instructor in periodically guiding students towards their initial ways of seeing, 

allowing them to have many opportunities to make connections between their intuitive 

judgments and mathematical procedures. 

Prepare and plan for multiple ways of seeing. Another point for teachers to consider is 

that there are many ways that students are able to construct a particular situation. The slope-

meter in particular elicited numerous unique ways of seeing quantitative aspects within the 

design. Students would go back and forth between several constructions of the situation, 

attending at one moment to the length of the ramps, the next moment to rise-run aspects, and the 

next to the steepness. However it is difficult for teachers to know exactly how students are 

attending to a situation, especially when each of the students’ emerging idiosyncratic notions 

may not be clear to the teacher. For this reason, it is important for teachers to provide students 

with multiple opportunities to articulate their ways of seeing a situation. Additionally, teachers 

should try to anticipate non-normative ways of seeing a situation, and in response, design or 

introduce aspects of the situation that may generate cognitive conflict resulting in alternate 

hypotheses that may be better aligned with conventional mathematics. That is, teachers should 

prepare a repertoire of cues for desirable intuitions while quieting others (see, e.g., Cobb, 1989; 

Fischbein, 1988). For example, persistent attention to length of the ramps was able to be 

redirected towards steepness by asking students to consider “walking up them.” 

Limitations 

As with all research, there are limitation to this study with regards both to the 

methodology and the design. Firstly, my study may have yielded more conclusive findings with 

an increase to the number of participants and the number of interviews with each participant. By 

increasing variation in participant characteristics and by varying activities and contexts in which 
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students interact, I might have established greater depth into student progress and growth in 

learning over multiple observations. Secondly, improving the usability of the design may also 

yield improved results. The slope-meter design afforded multiple interpretations, such as in terms 

of steepness or length attributes of the ramps. My design may have been improved through 

simplification that highlights only the pedagogically essential ambiguities. That is, the 

ambiguous tension between the steepness-based and the rise/run-based constructions should have 

been the central force driving the cognitive conflict for my design. That said, future designs 

might benefit from de-emphasizing the length attributes of lines, while highlighting the tension 

between rise, run and steepness.1 Additionally the interview protocol was limited to a very short 

period of time and only briefly introduced the concept of slope using a single quadrant of the 

cartesian plane with x and y-intercepts being the only salient points of comparison of which to 

compute slope. With additional time, the protocol might have been expanded to consider a wider 

variety of slope situations and conceptualizations.  

Future work 

Extending the grounded approach to additional conceptions of slope. Considering 

that the scope of this study was limited to the mathematical concept of geometric ratio and 

physical conceptions of slope, future designs might consider extending the “slope-as-steepness” 

approach to other mathematical applications of slope. For example, teachers might ask students 

to compare the relative steepness of lines and then connect those comparisons to parametric 

coefficient representations (e.g., y = mx+b), algebraic ratio representations (e.g., 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
 ), or 

                                                 
1
 It was suggested that ramps of variable length might be achieved using a computer simulation (e.g., Autocad, Minicad, Cabri, 

Geometry Sketchpad, etc.), wherein rise/run quantities, as well as slope can be easily adjusted along a continuum of values. 

These virtual embodiments, however, trade off with the haptic affordances of physical devices. 
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trigonometric representations (e.g., tan𝜃; e.g., Nagle et al., 2013). Future designs might also call 

attention to differences between positive and negative slopes, as only positive slopes were 

addressed in the study. Additionally, future designs might benefit from highlighting the 

limitations to which steepness can practically be used as a proxy for slope, such as in situations 

when comparing lines that use different units of measure (see, e.g., Zaslavsky, Sela, & Leron, 

2002).  

Scaling up. Findings indicate that many students were successful in bridging 

constructions of steepness and slope a one-to-one setting. But if this framework were scaled up 

to a full classroom, what would the teacher’s role be exactly? During one-to-one interactions, 

three specific prompts tended to productively engage students: (1) asking students, “What if we 

were walking up the ramps” effectively guided students to attend to steepness; (2) prompting 

students to articulate “what changed” when manipulating the incline of ramps was particularly 

effective at guiding students to attend to aspects that provide a perceptual foundation for rise and 

run; and (3) students who represented the slope-meter design using a method that captured both 

the ramp’s steepness and its rise and run had a greater likelihood of coordinating their notions of 

steepness with rise and run. I therefore suggest that when scaling this unit to whole classroom 

instruction, a teacher might consider introducing a situation involving inclined lines and initially 

ask students to consider, “What would it be like to climb them?” Next, allow students to 

manipulate the inclines and articulate changes that they notice. Teachers might also consider 

introducing an intermediate model for the situation that organizes and highlights students’ 

observations of slope, rise, run and steepness to highlight and discuss ambiguities among these 

features.  

In order for a pedagogical framework based on student intuition to be successful, teachers 
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must be genuinely interested in, careful, and aware of what their students are thinking. Eliciting 

students’ naive ideas also elicits some level of vulnerability, and if teachers trudge through their 

lesson plans without validating students’ ways of thinking, then they run the risk of actually 

discouraging students from reasoning intuitively. 
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Table 1  
Summary of a comparative case study 

  Lucia Sarat Damon Diagram of Slopeometer 
Initial, perceptual 
judgments 

“[The steeper ramp] would be difficult 
because it’s like almost straight. [the less 
steep ramp] would be pretty easy…” 

“Is it a catapult?... Look, I’m walking up it!...It 
looks like a race car track that cars drive 
down...One is longer than the other....One 
would be harder to climb.” 

“One is longer than the other one. Also one 
is steeper.” 

 

Attention to “rise” 
and “run” 

Rise: “I guess this one’s taller” 
Run: “This ramp covers more ground” 

Rise: “I changed the hill...the height…. 
Run: “oh, and it got longer... the length, it got 
longer, and the height got less.” 

Rise: “I changed the bottom (points to y-
axis; sic)...” 
Run: “...and the top (points to x-axis; sic).” 

 

Discovery of 
mathematical a 
rule to support 
sense of “steepness” 

Upon calculating congruent slopes, Lucia 
says: “I guess they are the same steep” 

“This is two [points to the ‘run’ of the shorter 
ramp], and two times two is four [indicates the 
‘rise’ of the shorter ramp]. This is four 
[indicates ‘rise’ of larger ramp], and four times 
two is eight.” 

“It’s different for this one because... can I 
move this? [aligns ramps to compare their 
length]. Cause if you compare, this one 
[indicating ramp that previously had smaller 
slope] is much shorter. This one is shorter... 
it [the slope] just changes, I don’t know 
how, it just changes.” 

  

Students guided to 
reformulate 
“steepness” in 
terms of slope  

R: “So do these numbers tell us anything 
about how hard it would be?” 
L:“When it’s bigger it’s.... Well... when it’s 
bigger it’s like really hard and when it’s 
little, like a two or a one, it means it’s hard 
but not that hard.” 

“If it keeps going down, it’s going to get less 
steep, and if this keeps going up and it gets 
steeper… If you divide these two, four two is 
two… This one is four, and four is greater than 
two, so it’s steeper.” 

Damon was unsuccessful in his attempt to 
make a connection between steepness and 
slope. 

 

Comparative 
Discussion 

These three case studies were selected to highlight a range of learning trajectories in my interviews. All three students made perceptual judgments, attended to and measured 
features of the ramps that they had not initially noticed, and searched for mathematical patterns, yet whereas Lucia and Sarat forged connections between slope and 
steepness, Damon did not. Lucia successfully coordinated her intuitive sense of “difficulty” with the slope quotient by moving back and forth between her intuitive sense and 
the formal mathematics several times throughout her learning trajectory. Sarat quickly formulated a rule, yet completed many mathematical procedures without consulting 
his intuition, and eventually needed guidance re-eliciting his initial sense of “steepness” before making a connection between his mathematical rule and his intuition. Damon 
was initially able to judge the “steepness” of the ramps, yet upon taking measurements, was unable to divert his attention from vertical and horizontal distances from the 
origin in order to reflect on his initial sense. This is likely because Damon did not revisit his initial sense of steepness, while Lucia and Sarat partook in the “back and forth” 
work that is appropriately useful when coordinating mathematical and intuitive constructions.  
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Figure 1. Line b. has greater slope than line a. It is experienced as “steeper.” 
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Figure 2. The slope-meter design with two parallel ramps set in the axes.  
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Figure 3. Lucia’s inscription showing three “half ramps.” Note that in this representation, a 

square appears at the origin to represent a block used to stabilize the slope-meter.  



 

 

GROUNDING SLOPE IN PERCEPTIONS OF STEEPNESS        

   

 
Figure 4. Sarat’s inscription numerically represents the “height” and “length” values of ramps in 

their respective axes. In his representation, a square appears at the origin to represent a block 

used to stabilize the slope-meter, while “Board A” and “BB” (shorthand for “Board B”) appear 

to label the topmost and bottommost ramps.  



 

 

GROUNDING SLOPE IN PERCEPTIONS OF STEEPNESS        

   

 
Figure 5. Damon’s tabular representation for parallel ramps of slope 2. Surprisingly, “top” refers 

to the horizontal distance from the origin (the run), and “down” refers to the vertical distance 

from the origin (the rise).  
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Appendix A: Design Iterations 

 
   (a)              (b)              (c) 

 
Three instructional designs were iteratively piloted and revised prior to the design of the slope-meter and 
are illustrated above. The designs are displayed chronologically from left to right: (a) overlapping 
transparency cards, each with a single line printed on it could be overlapped and compared. The image 
shows what a student would see if all transparency cards were overlapped. The design was intended for 
students to initially compare the steepness of the lines and then support those judgments mathematically 
by overlapping the lines atop a coordinate grid and computing and comparing slope. (b) Lines of different 
steepness printed on a white sheet of paper with an overlapping transparency grid. Students were asked to 
describe their sense of steepness as embodied in the lines, asked if they could explain that sense 
mathematically, before the overlapping grid was set atop the lines. The design was subsequently adapted 
because the transparency coordinate grid was difficult to keep in place, had no specific reference point 
(e.g., an origin), which may have lead students to confusion given their prior experiences with coordinate 
grids, (c) Early ramp design with stackable blocks used to adjust height. This design made the vertical 
quantity of the ramps salient, but did not highlight the horizontal aspects of the ramps, hence the slope-
meter was created with a prominent horizontal axis. 
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Appendix B: Semi-Structured Interview Protocol 

What Interviewer 
Says/Does 

Why Interviewer 
Says/Does This 

Possible Student 
Responses 

Follow Up Interviewer 
Responses 

Elicit Students’ Initial Perceptions of the Slope-Meter 

(Present student with 
slope-meter. Two ramps 
should be prepared with x-
intercept, y-intercept of 
2,4 and 8,4) What do you 
think this is? 

 

Gauge initial reactions to 
instruments. Establish 
common vocabulary for the 
wooden ramps and axes. 

I have no idea. What if we look at it like 
this? (Rotate structure and 
put it in profile from 
student’s perspective) 
Does it remind you of 
anything? 

  It looks like wooden 
blocks, a tower, a structure, 
ramps leaning on a 
building. 

What should we call these 
two things? Let’s call them 
ramps. 

What do you notice about 
the ramps? How are they 
related? 

Learn what students are 
initially attending to. Orient 
students’ view towards 
steepness and elicit their 
initial constructions of 
steepness. Give students 
the opportunity to initially 
explain steepness in any 
way that they are able to. 

They are both made out of 
wood. This one is longer. 

(If students are not 
initially attending to 
steepness.) Ok, what else 
do you notice about the 
ramps? How are they 
different?  
 
What if you were walking 
up the ramps? Which one 
would be harder to walk 
up? 

  This one takes more energy 
to climb. This one’s taller. 
The angle is more. If you 
roll a ball down this one, it 
goes faster. 

Tell me more about that. 
How do you know that? 
Can you show me what 
you mean? Would it help 
you to draw what you 
mean? 

Guide Students’ Attention to Rise and Run 

Can you change this ramp 
(point to the longer ramp) 
so it is steeper? Less 
steep? Has the same 
steepness as the other one? 
[let student finish set of 
prompts by building two 
ramps slope of 2, slope of 
½ will also work]. 

Guide students to attend to 
“rise” and “run” by 
requiring that they directly 
manipulate them and 
comment on “what 
changed.”  

No, there is no way to 
change the steepness. 

Did you notice that the 
ramps are removable? 
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What did you change? Establish common 
vocabulary for “rise” and 
“run” of the ramps. 
 
Make sure that student is 
attending to both the “rise” 
and the “run” 

I changed the [rise/run] to 
make it steeper, but nothing 
else changed. 

What do you mean by 
[student word for length]? 
 
(If student does not attend 
to either width or height)  
Did anything other than the 
height/width change? 
Another student told me 
that the new ramp “covers 
more ground” (or) “is 
taller” than the previous 
ramp. What do you think 
they meant by that? 

How tall is this ramp? 
How wide is this ramp? 

Invite students to 
enumerate rise and run.  

We would need a ruler to 
know for sure. 

Did you notice the notches 
on the axes? 

Now that we have 
measured the height and 
width of the triangle, can 
you make a drawing of the 
situation?  

Guide students to create a 
representation of the 
situation to utilize when 
considering hypothetical 
parallel ramps [see next 
prompt].  

I don’t know how to draw 
them. 
 

(If students are unable to 
represent the situation, 
interviewer can draw axes 
with uniform divisions on 
the x and y-axis, but 
without numbers.) 

Guide Students to Discover Mathematical Rules 

What if we wanted to 
build a ramp with a width 
of 3 units, and we wanted 
it to be exactly as steep as 
the other ramps? What do 
you think the height of the 
new ramp will be? 

 
[Encourage students to 
predict using pen and 
paper first, and then let 
them build and measure a 
ramp using the slope-
meter to test their 
prediction.] 

Present a problem that 
requires the student to 
formulate a rule to create 
lines of the same slope. 

Students may initially infer 
that property of steepness is 
additive. 
 
 
 
 
 
Students may “eyeball” the 
tower and make predictions 
based on what they “see.” 

You tried subtracting, did 
that work? You tried 
adding did that work? How 
do you know? Can you 
show me what this ramp 
would look like? 
 
 
How do you know?  

What would be the height 
of a ramp with the same 
steepness that is 10 units 
wide? How did you get 
that? what if the ramp is 
12 units wide? 22 units 
wide? 100 units wide? 1 
unit wide?  

Guide students to create 
several similar slope 
triangles, and compare 
pairs of numbers between 
triangles with the hopes 
that they will identify the 
equivalent ratio of rise to 
run. 

I have no idea. How did you find the 
height for this ramp? 
[Point to drawing] 
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  I doubled the width to get 
the height. 

Does your strategy of [e.g., 
doubling the width] work 
for all of the triangles? 

How are these two 
numbers related to each 
other? What do they have 
in common? 

Encourage students to 
generalize relationship 
between “rise” and “run” 
for parallel ramps. 

I have no idea. How is 4 and 8 related to 
10 and 20? And how is that 
related to 50 and 100? Etc.  
 
Do me a favor, divide the 
[student word for “rise”] 
by the [student word for 
“run”]. 

Guide Students to Reformulate “Steepness” in Terms of Slope 

(Once the student has 
found the slope, or the 
underlying ratio of the 
ramps with same slope.) 
What should we call this 
number? What does it 
show or tell us? Are these 
numbers in any way 
related to the ramps? What 
do these numbers tell us 
about the ramps? 

Probe for a connection 
back to steepness. Do 
students realize they can 
use the slope to answer 
questions about steepness? 
How do they use slope? 

Student may refer to slope 
as mathematical quantity 
only. 

Continue to next question 
and probe further. 

  Student may draw 
inferences from the slope 
of the line to the 
“steepness” of the line.  

Continue to next question 
and probe further. 

What about this ramp? 
(build the 2,8 ramp with 
extra ramp) What do you 
think the ‘slope’ of this 
ramp will be? Why?  

Probe for a connection 
back to steepness. Do 
students realize they can 
use the slope to answer 
questions about steepness? 
How do they use slope? 

Student may refer to slope 
as mathematical quantity 
only. 

Continue to extensions if 
time available. 

  Student may draw 
inferences from the slope 
of the line to the 
“steepness” of the line. 

Interviewer may conclude 
the interview at this time. 
If time remaining, continue 
to extensions. 


