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Abstract. 

The purpose of this preregistered study was to test an online intervention that presents 

participants with novel numbers about climate change after they estimate those numbers. An 

experimental study design was used to investigate the impact of the intervention on 

undergraduate students’ climate change understanding and perceptions that human caused 

climate change is plausible. Findings revealed that posttest climate change knowledge and 

plausibility perceptions were higher among those randomly assigned to use the intervention 

compared with those assigned to a control condition, and that supplementing this experience with 

numeracy instruction was linked with the use of more explicit estimation strategies and greater 

learning gains for people with adaptive epistemic dispositions. Findings from this study replicate 

and extend prior research, support the idea that novel data can support knowledge revision, 

identify estimation strategies used in this context, and offer an open-source online intervention 

for sharing surprising data with students and teachers.  

Keywords: climate change, conceptual change, epistemic dispositions, numerical 

estimation, plausibility judgments, learning technology 
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 Climate change by the numbers:  

Leveraging mathematical skills for science learning online 

There is a gap between scientific knowledge and the public understanding of science. 

Over 98% of climate scientists agree that humans are causing climate change, while only 57% of 

adults among the general public in the United States concur (Leiserowitz, 2022). Further, 43% of 

adults in the USA incorrectly believe that there is no scientific consensus around climate change 

(Leiserowitz, 2022). Misconceptions about socio-scientific topics of this sort can lead the public 

to distrust scientific viewpoints (Skogstad, 2003; Sinatra & Hofer, 2022) and can influence their 

policy preferences (Leiserowitz, 2006; Ranney & Clark, 2016).  

Correcting such misconceptions is not a simple matter of presenting people with better 

knowledge of the facts. Shifting misconceptions about climate change can be challenging 

because of several psychological barriers that make them resistant to change. For example, 

people sometimes resist engaging with climate change information to avert facing responsibility 

for their climate inaction or to avoid ostracization from social or political groups (Stoknes, 

2015). As such, efforts to support people in correcting their misconceptions need to consider 

multiple characteristics of the learner (Muis et al., 2015) and support learners with skills required 

to critically evaluate evidence and claims. 

Fortunately, there are approaches that have the potential to bolster critical evaluation 

skills and shift misconceptions, such as micro-interventions that present people with surprising 

numbers about climate change after they estimate those numbers (Ranney & Clark, 2016; 

Thacker & Sinatra, 2022). For example, I encourage the reader to take a moment to estimate the 

following quantity: What is the percent change in atmospheric levels of methane (a greenhouse 

gas) since 1750 until now? Savvy readers might take some time to reflect on this question, draw 
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from their prior knowledge about climate change, and roughly estimate a percentage value that 

they find mathematically and practically reasonable before checking the footnote1 to compare 

their estimate with the scientifically accepted value. Theory predicts that explicitly considering 

evidence in this way (e.g., by formulating a numerical estimate before assessing the scientific 

value) can activate prior knowledge (Zhang & Fiorella, 2023), elicit more explicit reflection on 

novel evidence, deeper integration of supported claims (Richter & Maier, 2017), and can 

subsequently shift people’s misconceptions to be more aligned with the scientific consensus 

(Lombardi et al., 2016). Furthermore, theory and evidence suggest that interventions that provide 

strategies for explicit reflection on discrepant information can incite greater knowledge revision, 

and that such effects are moderated by people’s dispositions toward reasoning (i.e., epistemic 

dispositions; Lombardi et al., 2016; Thacker & Sinatra, 2022). For example, Thacker & Sinatra 

(2022) found that undergraduate students who were presented with surprising numbers about 

climate change after estimating those numbers had significantly fewer climate change 

misconceptions compared to a control group, and that supplementing this intervention with 

numerical estimation instruction and reflective prompts led to larger learning gains among 

students who reported a willingness to reason with new evidence. Yet, despite these promising 

findings, the interventions created for prior studies are not easily accessible to the general public 

and the strategies that individuals employ when estimating quantities are not well understood.  

The purpose of this study was to replicate and extend upon a recent experimental study 

conducted by Thacker & Sinatra (2022). To do so, I made use of a revised version of their 

intervention: an online, game-based intervention that presents people with novel numbers about 

climate change after they estimate those numbers. Key revisions to the intervention included (a) 

 
1 The change in the atmospheric levels of methane since 1750 until now is a 151% increase (NASA, n.d.). 
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sharing game-like accuracy feedback to enhance learner engagement and encourage reflection on 

belief-discrepancies, (b) presenting sources of the information to improve its credibility, (c) 

adding text to explain, contextualize, and improve plausibility of the novel climate change 

numbers, and (d) providing a “summary” page to encourage further reflection on and integration 

of the information presented to participants. I also included a variant of the intervention that 

supplemented the experience with instruction on a targeted collection of numerical estimation 

strategies: use of given benchmarks, tolerance for error, and digit rounding. Using these 

interventions, I tested whether the same patterns of learning would emerge with a national 

sample of undergraduate students in an experimental study. Such replications that purposefully 

vary elements of context, sample, or operationalization of variables are also called “conceptual 

replications” (Plucker & Makel., 2021). Furthermore, I preregistered planned analyses and 

hypotheses in advance of data collection (see https://bit.ly/3rP2m9c for all preregistration 

information), a practice encouraged to promote transparency in research (Reich, 2021). In 

addition to replication, I also identified estimation strategies that participants reported using 

during the study, and assessed whether supplemental instruction on numerical estimation 

strategies influenced those strategies.  

Theoretical Framework 

To frame how individuals learn from novel quantitative information about climate 

change, this study synthesizes theory on Conceptual Change, Plausibility Judgments, and the 

Integrated Theory of Numerical Development (Dole & Sinatra, 1998; Lombardi et al., 2016; 

Siegler, 2016). 

Conceptual Change 
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When people encounter novel information that conflicts with their existing conceptions, 

there is potential for conceptual change. Conceptual change is when conceptual knowledge is 

restructured after an individual encounters incongruent information that conflicts with their 

existing perspectives (Dole & Sinatra, 1998; Murphy & Mason, 2006). There are many 

definitions and operationalizations of conceptual change (for a review, see Vosniadou, 2013). In 

this study I consider conceptual change to be the shifting of conceptual knowledge to be more 

aligned with scientific conceptions and less aligned with misconceptions (Dole & Sinatra, 1998). 

This process is contingent on aspects of the information and characteristics of the learner, such as 

their prior knowledge, motivation, emotion, and attitudes (Dole & Sinatra, 1998; Pintrich et al., 

1993; Sinatra, 2005; Sinatra & Seyranian, 2016). 

The Cognitive Reconstruction of Knowledge Model (CRKM) of conceptual change 

discerns between characteristics of the learner and characteristics of the information that learners 

engage with (i.e., the “message,” Dole & Sinatra, 1998), both of which predict engagement and 

potential for conceptual change. Learner characteristics include several factors, including the 

strength and coherence of a learner’s existing conception, their commitment to it, and their 

motivation to learn. Characteristics of the learning materials are also important; an individual 

will only learn from information if it is comprehensible, coherent, compelling, and if the claims 

they support seem plausible. Thus, when a learner is presented with a novel climate change 

number, there is potential for conceptual change only if that information is comprehensible to the 

learner in that they can process the quantitative information and find its meaning relevant and 

coherent with their prior knowledge. To elaborate on processes involved in considering and 

integrating novel information, I turn to theory on plausibility judgments. 

Plausibility Judgments for Conceptual Change 
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According to the plausibility Judgments for Conceptual Change model (PJCC; Lombardi 

et al., 2016), when people are presented with novel information (such as surprising climate 

change data), they initially process the information for validity, judge the plausibility of claims 

supported by the information, and then potentially restructure their knowledge and change their 

misconceptions as a result. The PJCC posits that when people initially pre-process information, 

their perceptions of source validity depend on several aspects of the information such as its 

complexity, corroboration with prior knowledge, perceived conjecture, and perceptions of source 

credibility (also see Connell & Keane, 2006; Rescher, 1976).  

After people have pre-processed novel information for validity, they then judge the 

plausibility of the claims associated with this information. Plausibility is the tentative perception 

of the potential truth of a claim (Lombardi et al., 2016). For example, an individual who pre-

processes and accepts that 99% of scientists believe that climate change is happening may then 

reflect on their feelings of plausibility and personal endorsements regarding the implied claim 

that climate change is real. Plausibility judgments can be either implicit or explicit, with more 

explicit processing depending on the individuals’ level of motivation and engagement, emotion, 

and personal dispositions around reasoning with new information (Lombardi et al., 2016; Richter 

& Maier, 2017). More explicit plausibility judgments increase the likelihood that individuals will 

reappraise the plausibility of scientific claims and increases the potential for conceptual change. 

For instance, when a person estimates a number, they may draw from their prior knowledge and 

existing assumptions about climate change and apply explicit numerical estimation strategies to 

arrive at their estimate, such as by using and mathematically manipulating known values to help 

estimate unknown values. Such an explicitly crafted estimate may better prepare the learner to 

interpret a scientifically accepted value when later presented with it. If there are notable 
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discrepancies between their estimate and the true value, such a confrontation may prompt the 

learner to re-appraise the plausibility of the claims supported by that information (c.f., Lombardi 

et al., 2016; Richter & Maier, 2017). 

Empirical evidence demonstrates that there are strong relationships between plausibility 

perceptions and conceptual change outcomes regarding climate change. For example, Lombardi 

and Sinatra (2012) found that students who completed a science course devoted to the topic of 

climate change had fewer misconceptions and found human induced climate change to be more 

plausible compared with students in a typical intro-science course. In a related study, Lombardi, 

Danielson, and Young (2016) found that undergraduate students who were prompted to reflect 

on their own climate change misconceptions rated scientific explanations of climate change as 

more plausible and had fewer misconceptions at posttest compared with students who read an 

expository text. 

Potential Moderators of Plausibility Judgments and Conceptual Change 

As noted, the PJCC predicts that emotional, motivational, and epistemic dispositional 

factors are associated with plausibility perceptions and conceptual change outcomes. This study 

narrows in on two potential moderating factors that may be linked to explicit evaluations of 

evidence and claims: epistemic dispositions and mathematics anxiety. 

Epistemic Dispositions. Epistemic dispositions can be defined as a learners’ relatively 

stable views about knowledge and knowing. For example, a person may have a flexible view of 

knowledge and may be generally open to reason with new evidence, even if that evidence is 

inconsistent with their existing beliefs (e.g., Stanovich & Toplak, 2019; Stanovich & West, 

1997). Such an epistemic disposition, also called Actively Open-Minded Thinking (AOT), is 

expected to shape whether people choose to explicitly evaluate novel information and integrate 
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related claims into their existing knowledge structures (Lombardi et al., 2016). Prior research 

shows that undergraduate students with higher levels of Actively Open-Minded Thinking 

benefited more from estimation instruction and reflection prompts when learning from novel 

climate change data (Thacker & Sinatra, 2022). The current study aimed to replicate these 

findings using a game-based online intervention. Namely, I anticipated that learners’ Actively 

Open-Minded Thinking would moderate the effects of the interventions created for this study. 

Mathematics Anxiety. Emotional and personal dispositions, such as trait-level 

mathematics anxiety, are also expected to shape whether individuals might explicitly engage 

with novel evidence (Lombardi et al., 2016; Richter & Maier, 2017; Ramirez et al., 2018). 

Mathematics anxiety can be defined as a relatively enduring disposition that is characterized by 

feelings of fear and anxiety in response to doing mathematics or considering the prospect of 

doing mathematics driven partly by a fear of failure (e.g., Ramirez et al., 2018). Despite the 

many emotional constructs involved in knowledge revision (Muis et al., 2018), mathematics 

anxiety in particular is linked to university students’ negative responses toward learning 

mathematics (Jackson & Leffingwell, 1999) and may therefore moderate the effects of a 

mathematical instruction intervention. As such, I expected that undergraduate students with 

higher levels of mathematics anxiety would be less responsive to an intervention supplemented 

with explicit instruction on numerical estimation skills. For the current study, I anticipated that 

individuals with higher math anxiety would benefit less from math instruction targeting 

numerical estimation strategies.  

Magnitude Knowledge  

Given that novel information can incite conceptual change, how might things change 

when that information is quantitative? Are there particular challenges people encounter when 
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evaluating and interpreting quantitative evidence? Theory on magnitude knowledge and 

numerical estimation suggests that, indeed, some people may require support in making sense of 

numbers they are presented with, and that emphasizing specific quantitative reasoning skills may 

facilitate sense-making processes. 

Making meaning of number magnitudes is considered to be a core competency in 

mathematics and science and involves several skills that develop over time (Booth & Siegler, 

2006; Cheuk, 2012; Opfer & Siegler, 2007; Sasanguie et al., 2012; Siegler & Booth, 2004). 

Siegler’s (2016) Integrated Theory of Numerical Development provides an explanation for how 

this development occurs, positing that people develop accurate understandings of number 

magnitudes and their relationships as they connect numbers (e.g., representing rising 

temperatures) to the things that those numbers refer to (e.g., global climate change). As learners 

develop, they learn new ways to make meaning of numbers by connecting and comparing them 

to other numbers, ideas, and representations through processes of association and analogy, both 

of which are activities that are considered crucial for both mathematical and scientific learning 

(Siegler, 2016). One useful context where people tend to apply processes of association and 

analogy is in situations where they must estimate numbers.  

Numerical Estimation 

Numerical estimation is an educated guess for a quantity that can draw from a person’s 

prior experiences and understanding of number and operations (Dowker, 2005). Of the common 

categories of numerical estimation skills (e.g., computational estimation or numerosity; Reys & 

Reys, 2004), research on measurement estimation is the most relevant for this study. 

Measurement estimation concerns the explicit estimation of real-world measures (Sowder & 
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Wheeler, 1989) and is useful for understanding factors that help people judge whether real-world 

quantities are reasonable and valid.  

Siegler and Booth (2005) summarize research supporting that people use a variety of 

strategies and representations when solving measurement estimation problems. Oftentimes 

people use multiple strategies when estimating a single number, and the strategies people use are 

numerous, ranging from: drawing from prior knowledge, rounding digits, using visual 

representations, making use of given or known information, or flat-out guessing (c.f., Joram, 

1998). Siegler & Booth (2005) also posit that people choose strategies adaptively depending on 

the situation and whether they believe the strategies will lead to more accurate and rapid 

estimates, as informed by accuracy feedback. People also change estimation strategies when 

presented with new and advanced strategies for estimating measures, potentially via formal 

instruction.  

Prior studies have established that a particularly important measurement estimation 

strategy is the benchmark strategy—the use of a given or known number to better estimate an 

unknown number. Prior lab-based research conducted with undergraduate students shows that 

exposure to benchmark values can improve their estimation accuracy in various contexts. For 

example, providing students with the distance between two cities before having them estimate 

the distance between new pairs of cities led students to make more accurate estimates compared 

with a control (Brown & Siegler, 2001). Similarly, providing benchmark quantities enhanced 

undergraduates’ estimates of a wider variety of every-day quantities (Brown & Siegler, 1993; 

1996; Friedman & Brown, 2000; Joram et al., 2005). Further, instruction on when and how to 

use given benchmarks can improve the frequency that students use benchmark values as well as 
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their estimation accuracy (Joram et al., 2005) and can benefit climate science learning among 

students with adaptive epistemic dispositions (Thacker & Sinatra, 2022).  

Further, empirical findings suggest that people’s estimation accuracy and judgments of 

reasonableness of quantities is associated with a tolerance for error—a tolerance for imprecision 

when estimating numbers, and valuing “reasonable” answers over “correct” answers. Individual 

interviews with university students, adults, and K-12 students suggest that a tolerance for error is 

a common characteristic among good estimators (Thacker et al., 2021; Reys et al., 1982; Reys & 

Reys, 2004; Shimizu & Ishida, 1994). Numerical estimation, by nature, involves some amount of 

imprecision and uncertainty, and maintaining tolerance for that imprecision is important for 

learners to assess and learn from their own performance. Moreover, research on self-assessment 

suggests that people learn more from their errors when their internal feedback and self-talk is 

focused on mastery and correcting deeper understandings rather than when ruminating on 

failures and worrying about surface level inaccuracies (Zhang & Fiorella, 2023). 

Another common and useful strategy used by good estimators is the use of flexible 

techniques for rounding digits to ease computations, reduce estimation time, and improve 

accuracy (Joram et al., 1998; Reyes & Reyes, 2004; Siegler & Booth, 2005). However, despite 

the correlational research showing that good estimators tend to use rounding techniques and have 

a tolerance for error, there are little to no experimental studies testing whether instruction around 

these techniques can increase frequency of their use nor whether they support learning outcomes. 

In the current study, I addressed this gap in the literature by experimentally testing an 

intervention that combined three key estimation strategies—the use of benchmark values, 

flexible rounding, and tolerance for error—and assessed whether the intervention increased 

participants’ reported use of these strategies and conceptual change outcomes.  
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Existing Interventions 

There is some existing empirical research that studies how people learn from novel 

climate change numbers after estimating the magnitude of those numbers (Thacker et al., 2021; 

Ranney et al., 2019; Ranney & Clark, 2016; Thacker & Sinatra, 2022). Ranney & Clark (2016) 

created an intervention that presents people with surprising climate change data after they 

estimate the magnitude of that data and found that undergraduate students who engaged with this 

intervention changed their policy preferences to be more aligned with scientific findings as 

compared with a control group.  

Thacker & Sinatra (2022) extended this intervention by testing differences between 

multiple variations of the original. Namely, they tested differences between five conditions, (1) 

an estimation intervention adapted from Ranney & Clark (2016), (2) the estimation intervention 

supplemented with numerical estimation instruction focused on supporting the benchmark 

strategy, (3) the estimation intervention supplemented with prompts to activate reflection on 

inaccuracies of their estimate, (4) the estimation intervention supplemented with both estimation 

instruction and prompts to activate reflection, and (5) a control group that read an expository 

text. The authors found that undergraduate students assigned to any of the four estimation 

conditions had fewer misconceptions about the scientific consensus by .33 standard deviations 

compared with a control group. Furthermore, such gains were stronger when the intervention 

was supplemented with instruction on benchmark estimation strategies and reflective prompts 

among students with higher levels of Active Open-Minded Thinking (Thacker & Sinatra, 2022). 

The current study aimed to investigate whether these findings would replicate in a somewhat 

simpler study design that included only three experimental conditions (estimation intervention, 

estimation intervention + numeracy instruction, control) rather than five, as to focus more 
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specifically on supporting productive estimation strategies and studying their impact on student 

learning in this context. The numeracy instruction, in particular, was expanded in this study to 

support a broader range of strategies, including the use of benchmark values (as previously done 

in Thacker & Sinatra, 2022), as well as two additional estimation strategies: tolerance for error 

and digit rounding techniques.  

Namely, our team designed an open-source, online web-application over the course of 22 

interviews with graduate and undergraduate students at a university in the southern United States 

(Thacker et al., 2021). Through three iterations of interviews, we identified specific 

mathematical skills that students used as they estimated and interpreted novel climate change 

data and redesigned the intervention to make these skills salient for participants. The study 

revealed that participants with above-median learning gains tended to make use of three specific 

strategies in tandem: applying arithmetic operations to given benchmark values, flexible decimal 

rounding, and expressing a tolerance for error. The design iterations resulted in an openly 

accessible, game-based learning intervention with the option to supplement the experience with 

estimation instruction focused on these three skills. The design was also modified from Thacker 

& Sinatra’s intervention to present participants with: feedback on the accuracy of their estimates 

that call attention to belief-discrepancies, short explanations to contextualize and improve 

coherency of the “true values” that they were estimating, links to sources that back up the 

evidence to improve its credibility, and a summary page to encourage further reflection. That is, 

we added design features that were not previously included in the original design that might 

facilitate students’ explicit consideration of potentially belief-discrepant numbers about climate 

change. However, despite the potential utility of this game-based intervention for climate change 
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learning,2 little is known about its effect on student climate change learning outside of the small, 

descriptive sample. Furthermore, little is known about what skills or knowledge participants 

specifically gain from the mathematical instruction provided in this setting as compared with the 

baseline condition.  

Research Questions and Hypotheses 

The current study aimed to test whether the findings of Thacker & Sinatra (2022) would 

replicate when using a game-based estimation intervention that was modified to (a) emphasize 

three estimation strategies (the benchmark strategy, flexible rounding, and tolerance for error) 

rather than the one included in the original study (the benchmark strategy), (b) be presented in an 

accessible online format, (c) include estimation accuracy feedback to help learners detect and 

correct their misunderstandings, and (d) include an explanation of and sources for each number 

estimated. In addition to assessing the impacts of the revised intervention, this study extends 

prior research by also testing whether the supplemental instruction on numerical estimation 

influenced the estimation strategies that participants reported using during the study. This study 

also aimed to increase the credibility of the research findings by documenting the research 

questions, hypotheses, and planned analyses in advance to conducting the study (for the full 

anonymous preregistration, see https://bit.ly/3rP2m9c).3 Namely, I sought to answer the 

following preregistered research questions: 

● Research Question 1 (RQ1). To what extent would estimation of and exposure to novel 

climate change data using an online learning intervention improve learners’ climate 

change knowledge and plausibility perceptions compared with reading an expository 

text? 

 
2 Hereafter also referred to as the “estimation game,” “game-based intervention,” or “the intervention.” 
3 Note that the preregistration describes an additional study that is beyond the scope of this study. 
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Regarding RQ1, I hypothesized (H1) that people assigned to the intervention conditions 

would have greater knowledge at posttest when compared with people assigned to read an 

expository text. I also anticipated there would be no significant difference in climate change 

plausibility perceptions between the intervention groups and the comparison group at posttest.  

● Research Question 2 (RQ2). To what extent do mathematics anxiety and epistemic 

dispositions moderate the effects of the interventions on knowledge and plausibility? 

Regarding RQ2, I hypothesized that (H2.1) individuals with high math anxiety would 

benefit less from the mathematics skills instruction. That is, I expected that math anxiety would 

negatively moderate the effects of the intervention modified with estimation instruction when the 

outcome was climate change knowledge or plausibility perceptions. I also hypothesized that 

(H2.2) individuals with higher levels of Actively Open-Minded Thinking would benefit more 

from the intervention and modified intervention compared with the comparison condition when 

the outcome was climate change knowledge. That is, I expected that Actively Open-Minded 

Thinking would positively moderate the effects of the intervention. I also anticipated that there 

would be a significant main effect of Actively Open-Minded Thinking on plausibility 

perceptions, but no significant interactions with the experimental conditions. 

● Research Question 3 (RQ3). To what extent does enhancing the intervention with 

instruction on estimation strategies change learners’ climate change knowledge and 

plausibility? 

Regarding RQ3, I hypothesized that (H3) supplementing the intervention with instruction 

on estimation skills would lead learners to report more scientific knowledge about climate 

change compared with those who are assigned to the intervention but without estimation 
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instruction. I expected no significant differences in climate change plausibility between these 

conditions. 

● Research Question 4 (RQ4). Will individuals who are assigned to interact with the 

intervention supplemented with instruction on estimation strategies report using the 

emphasized estimation strategies (i.e., the benchmark strategy, flexible rounding, and 

tolerance for error)? 

Regarding RQ4, I hypothesized that (H4) individuals who were assigned to the 

intervention supplemented with estimation instruction would more frequently report (a) tolerance 

for error, (b) rounding techniques, and (c) benchmark strategies compared with those assigned to 

the intervention without this modification. In addition to testing this preregistered research 

question, I also explored additional strategies that learners reported and whether there were 

differences in groups assigned to receive estimation instruction. In addition to testing RQ4, I also 

explored additional strategies that learners reported and whether there were differences in groups 

assigned to receive estimation instruction.  

Methods 

Participants and Procedure 

To test these hypotheses, I formed a national online Qualtrics panel of N = 605 

undergraduate students to participate in an experimental online survey. The sample size obtained 

was above the target of 500, which was a rounded estimate based on a power analysis using 

G*Power (Faul et al., 2009) for a regression with six predictors, power = .8, significance = .05, 

and an effect size of f² = 0.03 based on previous research (Thacker & Sinatra, 2022).  

To obtain this sample, Qualtrics representatives initially used multiple platforms to 

widely share a survey link online; 2,651 people initially clicked on the link to participate, but 
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2,046 were dropped from the analysis because they either did not meet the eligibility criteria 

(over 18 and a full-time undergraduate student), did not pass an attention check, or because they 

were flagged as a “speeder” by the algorithm created by Qualtrics. There was no missing data at 

pretest or posttest.  

Participants in the main analytic sample were 20.3 years old on average, 79.3% Female, 

16.7% Male, 3.5% nonbinary/other, 47.6% White/Caucasian, 16.0% Black/African American, 

14.5% Asian American, 4.0% Two or More Races, and 1.5% American Indian or Alaskan 

Native. All participants (a) completed a pretest to measure their misconceptions about climate 

change, plausibility judgments about climate change, mathematics anxiety, and prior epistemic 

dispositions, (b) were automatically directed to a web app that randomly assigned them to one of 

three conditions (a control group that read an expository text about the greenhouse effect, the 

estimation game intervention, or the modified estimation game supplemented with estimation 

instruction), and then (c) were automatically directed back to the original survey where they 

completed an estimation strategy report (intervention conditions only), identical posttest of 

knowledge, plausibility perceptions, and a demographics questionnaire. For a summary of the 

procedures, see Figure 1. 

[INSERT FIGURE 1 AROUND HERE] 

Materials 

All survey materials, intervention texts, data, and analysis scripts are available on the Open 

Science Framework (https://osf.io/nqbyr/?view_only=bc36d59f82424c4f8e67cfb1538afaaf).  

Conditions 

There were three experimental conditions: the estimation game intervention group, modified 

intervention group, and control group (see Appendix A for a summary with screenshots, 
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excerpts, and a link to the intervention). Students assigned to the estimation game intervention 

estimated 12 climate change related numbers before being presented with the scientifically 

accepted answer. As with the original study, six of these items were from Ranney & Clark 

(2016) and mostly prompted participants to estimate unitless percentages; the remaining six 

items prompted participants to estimate raw quantities (e.g., in units of meters, degrees F, or 

Billions of tons of CO2) and presented participants with a benchmark value (Thacker & Sinatra, 

2022). When participants were presented with the scientifically accepted answer, the intervention 

also displayed a short explanations justifying each accepted value, references with links to 

credible sources of information, and accuracy feedback displayed as images of stars representing 

different accuracy levels.4 After estimating all 12 climate change numbers in this way, the game 

presented participants with a “final score” showing a summary of each of their estimates with the 

original questions, the true values, the stars they earned for each, and links to information 

sources. Students in the modified intervention condition also completed the same estimation 

game, but prior to the game, they engaged with instructional text that emphasized three 

numerical estimation strategies—tolerance for error, the benchmark strategy, and flexible 

rounding—with worked examples and two checks for understanding. These three estimation 

strategies were emphasized because, in prior qualitative research (Thacker et al., 2021), they 

were used among university students with above-median learning gains for this specific task. 

Students in the control group were presented with an 812 word expository text about the 

greenhouse effect (from Lombardi et al., 2013) to take approximately the same amount of time 

as the intervention conditions. In addition to describing how the greenhouse effect works, the 

 
4 Scoring was as follows: Five stars were displayed for estimates within 10% of the true value, four if within 20%, 
three if within 30%, two if more than 30%, and one star if the estimate was in the wrong direction (e.g., they 
estimated that atmospheric CO2 levels have decreased since 1959). 
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control text discussed several topics that were also covered in the estimation game conditions. 

Namely, both noted that greenhouse gasses (such as CO2 and methane) are responsible for 

trapping heat in the atmosphere, that humans are responsible for adding greenhouse gasses to the 

atmosphere, that this causes temperatures to rise and global ice cover to melt, and that 97% of 

climate scientists agree that climate change is happening. All experimental conditions were 

presented in an openly accessible, open-source online web app (ianthacker.com/design.html; also 

see Thacker et al., 2021].  

Dependent Variables 

Climate Change Knowledge. Knowledge of climate change was measured using seven 

items adapted from the Human Induced Climate Change Knowledge measure (HICCK; 

Lombardi et al., 2013), as done in prior research (Thacker & Sinatra, 2022). Participants 

responded as to whether they believed that climate scientists would believe that certain 

statements are true (e.g., “Most of the world’s glaciers are decreasing in size. This is evidence of 

climate change”). Participants reported the extent they thought climate scientists would agree 

with seven statements on a seven-point agreement scale ranging from 1 (completely disagree) to 

7 (completely agree). As such, agreement on this scale represents accurate conceptions about the 

scientific consensus around climate change and disagreement represents misconceptions. 

Participants completed this scale pre-intervention and post-intervention (αpre = .65, αpost = .74). 

Plausibility Perceptions. Perceptions of plausibility that humans are responsible for 

climate change were measured using four items adapted from the Plausibility Perceptions 

Measure (PPM; Lombardi et al., 2013). These four items from the original eight-item scale were 

used to shorten the length of the survey and were selected because they had the highest factor 

loadings from Thacker & Sinatra (2022; all factor loadings > .84). These items were intended to 
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capture participants’ personal positions on whether humans are responsible for climate change as 

they responded to statements (“Evidence from around the world shows that the climate is 

changing in many regions”) on a six-point agreement scale from 1 = Highly Implausible (or even 

impossible) to 6 = Highly Plausible. This scale was completed at pretest and posttest (αpre = .81, 

αpost = .85).  

Estimation Strategy Reports. Participants assigned to the two intervention conditions 

also provided open-ended descriptions of strategies that they used to estimate numbers. 

Participants provided immediate retrospective strategy reports at the conclusion of the estimation 

game by explaining their responses in a text box in response to the prompt, “Please describe in as 

much detail as possible how you made your estimates of climate change numbers.” (also see 

Sidney et al., 2019; Siegler & Thompson, 2014). Strategy reports can reflect the impact of 

experimental conditions on the strategies they support by allowing insight into the specific 

methods people used to approach problems and whether they applied the techniques emphasized 

in experimental conditions. In sum, I used strategy reports as evidence that participants’ answers 

were indicative of the effectiveness of the direct instruction on estimation strategies. 

The coding scheme initially included several codes that emerged from a prior qualitative 

investigation exploring estimation strategies individuals employed during think aloud interviews 

as they engaged earlier versions of the estimation game (Thacker et al., 2021). These codes were 

adapted for use in the current study, with each code reflecting a different strategy or approach 

that students reported using to estimate climate change numbers (see Appendix B for the full list 

of codes and descriptions). Given that numerical estimation often involves the use of multiple 

strategies in-tandem (Siegler & Booth, 2005), we designed the coding scheme to potentially 

capture multiple estimation strategies by allowing for codes that were not mutually exclusive.  
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Three particular strategies from the codebook were assessed across conditions in this 

study: tolerance for error, rounding techniques, and benchmark strategies. Tolerance for error 

was reflected when participants reacted positively to accuracy feedback despite estimates that 

were not perfect, (e.g., “I knew it wasn’t going to be 100% accurate,” also see, Thacker et al., 

2021; Shimizu & Ishida, 1994). Flexible rounding techniques were reflected when the individual 

reported rounding numbers to make mental computation easier (e.g., by rounding the hints to 

whole numbers before making estimates; e.g., Joram et al., 1998). Benchmark strategies were 

reflected when participants reported using given numbers to help them estimate unknown 

quantities (Brown & Siegler, 2001; Joram et al., 1998, Siegler, 2016). In this sample, students 

reported using benchmark strategies in multiple ways, ranging from a vague use of benchmarks 

(e.g., “I used the hints”), to the use of benchmarks to project trends over time (“I used the bit of 

evidence they gave and extrapolated from there”), or the use of arithmetic operations to rescale 

or iterate benchmarks (“I went off the amount of years and multipled [sic]”). For additional 

codes identified in the data with examples, see Appendix B.  

A graduate student coder and I first collectively coded 50 responses as to calibrate around 

the codebook. Then we independently coded all remaining responses; interrater reliability was 

high (> 95% interrater agreement across all codes and responses). We then resolved all 

disagreements through a conversation. Both coders were blind to condition and all other student 

data as they coded strategy reports. The graduate student coder was not privy to the full 

experimental design or hypotheses. 

Covariates 

Epistemic Dispositions. Baseline epistemic dispositions were measured using the 

Actively Open-Minded Thinking scale (AOT; Stanovich & West, 1997) that captures 
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participants’ willingness to reason with novel evidence using seven items (e.g., “People should 

take into consideration evidence that goes against their beliefs”) using a seven-point agreement 

scale (α = .71).  

Math Anxiety. Participants also completed a Mathematics Anxiety Questionnaire 

(Ganley et al., 2019) consisting of nine items (e.g., “I get a sinking feeling when I think of trying 

to solve math problems”) with five response options ranging from 1 (Not true of me at all) to 5 

(Very true of me; α = .93).  

Analytic Strategy 

To assess the effects of the interventions on the knowledge and plausibility outcome 

variables (RQ1 & RQ3), I used ordinary least squares regression with heteroskedasticity-robust 

standard errors using a separate model for knowledge and plausibility perceptions. Predictors 

were the experimental conditions and pre-test scores. To assess moderating effects (RQ2), I 

repeated these analyses after adding math anxiety and Actively Open-Minded Thinking as 

moderators of the treatment condition, with separate models for each moderator. I examined 

differences between all experimental groups, and to parallel analyses from Thacker & Sinatra 

(2022), I also ran these models using complex contrasts testing whether there were knowledge or 

plausibility differences between (a) the control and a combination of the intervention two 

conditions, and (b) the two intervention groups, both after adjusting for pretest scores. All 

continuous variables were standardized around the mean prior to analyses. Analyses were 

performed using R Version 3.6.1. 

To test whether estimation instruction led to more frequent reports of tolerance for error, 

rounding, and benchmark strategy techniques (RQ4), I tallied frequency counts for each 

estimation strategy that students used within each condition and compared frequencies between 
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those assigned to the estimation game intervention and those assigned to the estimation game 

modified with estimation instruction using two-sample difference in proportions tests. 

Results 

Preliminary Analyses 

 Preliminary analyses revealed no significant preexisting differences between conditions 

for all main outcomes and predictors. Namely, there were no significant between-condition 

differences in pretest knowledge (F = 0.14, p = .874), pretest plausibility perceptions (F = 0.12, 

p = .890), epistemic dispositions (F = 0.53, p = .587), mathematics anxiety (F = 0.35, p = .702), 

age (F = 0.02, p = .979), gender (χ2 = 10.2, p = .117), or race (χ2 = 4.6, p = .991). Skew ranged 

from –.50 to .40 and kurtosis from –1.31 to 0.10 for all continuous variables, which is considered 

acceptable (Tabachnick & Fidell, 2013). Descriptive statistics by condition and intercorrelations 

among all main outcomes and covariates are presented in Table 1. As with the original study, I 

found significant improvements in knowledge (d = 0.17, p < .001) from pretest to posttest. 

Further, I confirmed that there were no significant interactions between condition and pretest 

knowledge (p = .349) or condition and pretest plausibility (p = .094), suggesting that the data met 

assumptions for the planned analyses (Murnane & Willett, 2010). 

[INSERT TABLE 1 AROUND HERE] 

Main Analyses 

RQ1: Main Effects of the Intervention. Table 2 displays the full results for all multiple 

regression analyses. With regards to posttest knowledge as the main outcome, participants in 

both intervention conditions outperformed the control group. This difference was significant for 

both intervention variants before and after including moderating variables and interactions. I also 

found a significant difference in posttest knowledge between the control and the combined 
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intervention groups (d = 0.30, p < .001), an effect size that is very close to that found in the 

original study (d = 0.33). As such, H1 was confirmed.  

[INSERT TABLE 2 AROUND HERE] 

When posttest plausibility was the main outcome, I found a significant and positive effect 

of the baseline estimation game compared with the control group before and after including 

moderators and interactions. Using contrasts to combine intervention conditions and compare 

with the control, I found no significant difference in posttest plausibility (p = .158). 

RQ2: Moderating Effects of Math Anxiety and Actively Open-Minded Thinking. 

When math anxiety was the moderator, I found no direct or moderating effects on the relations 

between experimental conditions and knowledge or plausibility. Despite finding a marginally 

significant negative moderating effect of math anxiety on posttest knowledge among those 

assigned to the numerical estimation instruction condition (β = -0.126; p =.069), the effect was 

not significant at the .05 level. Thus, H2.1 was not supported. 

When Actively Open-Minded Thinking was the moderator, findings revealed a 

significant direct effect on knowledge and a moderating effect on the relation between the 

modified intervention and knowledge. On average, the effects of the intervention modified with 

estimation instruction were .20 SDs stronger for people with Actively Open-Minded Thinking 

levels 1 SD above the mean. When posttest plausibility was the outcome, I found no significant 

main or moderating effects. Thus, I found partial support for H2.2 in that epistemic dispositions 

moderated the effects of the modified intervention on posttest knowledge, but not on plausibility 

perceptions. 

RQ3: Comparison Between Intervention and Modified Intervention. Comparing the 

two intervention groups to each other revealed no significant differences after controlling for 
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pretest scores. This was true for both outcomes: posttest knowledge (p = .180) and plausibility 

perceptions (p = .117). That is, I found no effects of supplementing the estimation game with 

estimation instruction on the main outcome variables, H3 was not supported. 

RQ4: Self-Reported Estimation Strategies. A summary of the estimation strategies 

used by participants by condition is presented in Table 3. As predicted, qualitative reports of 

estimation strategies revealed that significantly more participants in the modified intervention 

group shared tolerant reactions to accuracy feedback (H4a) and reported using the benchmark 

strategy more often (H4c) compared with the baseline intervention group. However, I found that 

no participants reported using rounding techniques, thus I did not find the predicted differences 

in rounding strategies between conditions (H4b). 

[INSERT TABLE 3 AROUND HERE] 

In Table 3, I also report additional estimation strategies that emerged but were not 

preregistered. Of these strategies, I found that significantly fewer students who received 

estimation instruction reported using “wild guesses” to estimate climate change numbers and 

significantly more students reported using arithmetic operations on given numbers compared 

with the baseline intervention group. Students who received estimation instruction also less often 

referred to news or social media as a source for estimates. I also found that participants across 

both conditions reported drawing from prior knowledge (educational experiences, personal 

experiences, vague statements of prior knowledge, and use of information from previous items), 

though there were no significant differences in use of prior knowledge between conditions. 

Discussion 

The purpose of this preregistered experimental study was to investigate whether people 

revise their conceptions after encountering novel statistics in an online intervention, and whether 
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that learning is enhanced with additional numeracy instruction. Findings indicated that 

undergraduate students assigned to a game-based estimation intervention outperformed those in 

an expository text control group, and that effects were more pronounced among participants with 

adaptive epistemic dispositions who also received additional estimation instruction, replicating 

findings from prior work (Thacker & Sinatra, 2022; See Table 4 for a summary of all 

preregistered research questions, hypotheses, and results).  

In addition to replication, this study extends prior work in several ways. First, the central 

intervention used in this study was redesigned to be more openly accessible to students and 

teachers by presenting novel data using a game-like web app. Second, the online intervention 

was revised from the original version to better promote climate change plausibility perceptions 

by providing: (a) explanations for the “true values” to improve credibility and coherence of the 

information, (b) personalized accuracy feedback to signal reflection on belief-discrepant 

information as well as enhance engagement, (c) sources of scientific information to improve its 

credibility, and (d) instruction on a more comprehensive set of estimation strategies. Third, and 

potentially because of these design revisions, I found previously undetected effects of the 

intervention on plausibility perceptions when compared with a control group. Fourth, this study 

assessed estimation strategies that students reported using and showed that students used more 

explicit estimation strategies when assigned to receive supplemental estimation instruction 

emphasizing the benchmark strategy, the importance of tolerating imperfect estimates, and 

flexible rounding strategies.  

[INSERT TABLE 4 AROUND HERE] 

However, before discussing the findings in more detail, I would like to acknowledge 

some of the limitations of this study. First, this study relies on the use of self-reported measures, 
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which can have questionable validity in contexts where people share information about sensitive 

topics such as their beliefs about climate change (Tourangeau et al., 2013). As such, I took 

necessary precautions to reduce social desirability bias by ensuring participants of their 

anonymity and allowing them to complete surveys in a private setting. Second, the sample in this 

study was more female (79.3%) than the national average (58%; Irwin et al., 2022). Future 

studies might aim to recruit a more nationally representative sample. Third, although the control 

text and the intervention were parallel in many regards (e.g., both had similar word count, 

presented information about the mechanisms and impacts of climate change, and emphasized 

that there is a scientific consensus that climate change is happening), they were not identical in 

terms of the information presented. Future research might investigate how a wider variety of 

expository texts perform compared to the estimation game. Fourth, the central intervention in 

this study tested the effects of an intervention that combined many design features to maximize 

explicit reflection on belief-discrepant numbers. Though it is expected that people use multiple 

strategies in combination while estimating real world measures (e.g., Siegler & Booth, 2005), it 

might be considered a limitation that the research design makes it difficult to disentangle the 

unique contributions of each strategy. Future research might explore the unique effects of each of 

the three numerical estimation strategies emphasized in this study and interactions between them.  

A Numerical Estimation Game for Climate Change Learning 

I found greater learning outcomes among students who engaged with the online 

estimation game. On average, the two groups assigned to estimate climate change numbers 

before seeing the true value performed about a third of a standard deviation better than a control 

group on a climate change knowledge posttest, as predicted. Findings replicate the effects found 
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by Thacker & Sinatra (2022) showing that novel climate change data can support climate change 

learning when presented in a game-based online intervention.  

However, unlike the original study which found no effect of condition on personal 

plausibility perceptions, I found a significant and positive impact of the baseline estimation game 

on plausibility perceptions compared with the control. Such shifts in climate change plausibility 

might be explained by improvements to the intervention design. Unlike the original study, the 

intervention in the current study leveraged several design principles inferred from conceptual 

change theory. The design was revised to explain, contextualize, and provide credible sources of 

novel data as to enhance its comprehensibility, coherency, and credibility—all important 

preconditions for plausibility appraisals and conceptual change around socio-scientific topics 

(Dole & Sinatra, 1998; Lombardi et al., 2016). The estimation game also presented learners with 

game-like accuracy feedback to signal the potential need to explicitly reflect on belief-discrepant 

information and enhance engagement, both important mechanisms involved in plausibility 

appraisals and conceptual change (Lombardi et al., 2016). Furthermore, this finding supports 

research suggesting that people experience deeper learning from their errors when presented with 

feedback and external guidance to support productive self-explanations, which helps the learner 

detect and correct their misunderstandings (Zhang & Fiorella, 2023). Future research might test 

the effects of each of the novel design principles individually rather than in combination. 

Moderating Effects of Epistemic Dispositions 

Results also revealed that students’ willingness to reason with new evidence was a 

significant predictor of their climate change learning and that it also moderated the effects of the 

intervention when supplemented with estimation instruction. These results replicated findings 

from Thacker & Sinatra (2022) and showed that students with higher levels of Actively Open-
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Minded Thinking had greater learning outcomes if assigned to the game supplemented with math 

instruction. The moderating effects of Actively Open-Minded Thinking provides support for the 

PJCC (Lombardi et al., 2016) in that instruction that emphasizes the explicit evaluation of 

evidence appears to be most effective among those willing to consider belief-discrepant 

information. Based on these findings, educators might consider emphasizing to students the 

importance of keeping an open mind when examining new types of numerical evidence, even if 

the evidence is contrary to their current beliefs.  

I also found a marginally significant moderating effect of mathematics anxiety on the 

impact of mathematics instruction. People with mathematics anxiety were only slightly 

negatively affected by the estimation instruction. One reason for this relatively null finding could 

be that the mathematics instruction presented in this intervention may have been less triggering 

of anxiety when compared to a typical undergraduate mathematics classroom context. For 

example, the intervention in this study was completed in a private setting, potentially reducing 

the performance aspects of anxiety associated with mathematics (Ramirez et al., 2017).  

Effects of Supplementing the Game With Numerical Estimation Instruction 

Consistent with the original Thacker & Sinatra (2022) study I also found that, on average, 

people assigned to the intervention modified with estimation instruction had no additional 

learning or plausibility benefits compared to the baseline intervention. One explanation for this 

finding is that the baseline intervention may have been equally effective at encouraging explicit 

evaluation of quantities as the version modified with estimation instruction. Another explanation 

is that the outcome measures may not have been sensitive to capture the learning that occurred 

from this very short micro-intervention.  
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However, despite finding only weak effects of estimation instruction on climate change 

learning, the current study extends prior research by examining the effect of this instruction on 

reported estimation strategies, revealing more nuanced learning outcomes. Participants who 

received additional estimation instruction when playing the estimation game reported using more 

explicit computation strategies such as making use of given information, mathematically 

manipulating that information, and fewer wild guesses. They also tended to report more tolerant 

reactions to imprecise estimates. In other words, students who received light touch estimation 

instruction reported using more explicit numerical estimation strategies compared with those 

who did not. These explicit processes might explain the learning benefits experienced by people 

who were open to reason with new evidence. As posited by the PJCC, conceptual change is more 

likely to occur when learners process information and are willing to explicitly engage with 

potentially belief-discrepant claims (Lombardi et al., 2016; Richter & Maier, 2017). Findings 

from this study support this idea, showing that estimation instruction encouraged students to 

apply more explicit data processing strategies and increased their awareness of the discrepancies 

between their estimates and the true values—leading to more conceptual change among those 

willing to change their mind based on such discrepancies. As such, findings show that bolstering 

numeracy skills can shape problem solving strategies as to enhance explicit, analytical reasoning 

with data, the very skills that may be crucial for enhancing learning amongst students with 

adaptive epistemic dispositions discussed earlier.  

I should also note that, contrary to what was hypothesized, there was little evidence that 

participants employed digit rounding techniques that were emphasized in the estimation 

instruction. One reason for this could be explained by the context. In this study, participants 

responded to an open-ended item after estimating 12 climate change numbers and retrospectively 
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reported strategies they had used. In previous research (Thacker et al., 2021), participants had 

reported their strategies in-situ during think-aloud interviews. As such, ephemeral estimation 

strategies may have been under reported in the current study. Future research might improve 

upon this study design by integrating strategy reports to appear immediately after participants 

were presented with accuracy feedback.  

Implications and Future Directions 

This study provides empirical support for the PJCC (Lombardi et al., 2016) and replicates 

and extends findings from Thacker & Sinatra (2022). Results demonstrated that a just handful of 

novel climate change numbers presented in a brief online intervention incited knowledge 

revision and this change moderated by epistemic dispositions, as predicted by the PJCC. 

Estimation instruction also enhanced learning outcomes for students who were open to reason 

with novel evidence and significantly increased reported use of benchmark strategies, a tolerance 

for error, and reduced the frequency of vague guessing, supporting the idea that explicit 

estimation strategies can be enhanced with light-touch instruction. Indeed, findings suggest that 

bolstering estimation heuristics may benefit people with adaptive epistemic dispositions 

potentially because it enhances explicit processing—a combination of factors that are predicted 

to promote shifts in plausibility perceptions and conceptions (Lombardi et al., 2016). Future 

experimental research might utilize interventions that enhance Actively Open-minded Thinking 

(c.f., Chang et al., 2016) to test causal relationships with explicit reasoning and climate change 

learning. Future research might also investigate additional factors that are predicted to moderate 

learning processes, such as motivational and emotional factors as well assess additional 

outcomes such as behaviors and intentions (c.f., Sinatra et al., 2012).  
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The intervention presented in this study and the design principles that it embodies also 

present a potential toolkit for the communication of climate change science. This study 

demonstrates that people can shift their misconceptions when prompted to make predictions 

before being presented with scientific evidence, and that supporting this evidence with 

personalized feedback and information that bolsters its credibility and coherence can also 

enhance plausibility perceptions of climate change. Consistent with prior research, evidence 

from this study supports the idea that effective climate change communication requires more 

than merely presenting people with accurate information; it is important to consider people’s 

dispositions, beliefs about knowledge, emotion, and motivation (see e.g., Muis et al., 2015; 

Sinatra et al., 2014). Indeed, communication with the public about climate change involves 

overcoming many unique psychological barriers that are connected with their social and political 

identities (Stoknes, 2015), and supporting people in overcoming those barriers requires careful 

attention to building their skills and dispositions around evaluating evidence and claims.   

Findings from this study also show that explicitly emphasizing mathematical skills may 

have important implications for educators. Adding numerical estimation instruction to the 

baseline intervention supported the use of explicit estimation strategies and bolstered climate 

change learning among people with adaptive epistemic dispositions. As such, educators might 

consider supplementing number estimation activities with some basic advice around useful 

estimation strategies, such as emphasizing when and how to use benchmarks, and by reminding 

students that rough estimates of numbers need not be perfect and that some level of imprecision 

is inevitable. Instructors might also consider that such explicit estimation strategies seem to be 

more effective for students who are more willing to engage with belief-discrepant information 

and tailor the level of mathematics instruction based on the makeup of their classroom. 
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Instructors might additionally, aim strengthen students’ adaptive epistemic dispositions by 

communicating the importance of keeping an open mind when engaging with belief-discrepant 

evidence. 

Lastly, this study provides both mathematics and science instructors with a tool that 

enables applications of mathematical skills to learn about climate change. The central 

intervention used in this study provides educators concerned with public understanding of 

science with an easily accessible learning application that can be easily shared with students, can 

be customized to their needs, and adapted to provide opportunities for students to apply 

numeracy skills towards making meaning of key numbers that describe our changing 

environment.  

Conclusion 

This study expands our understanding of conceptual change processes when people learn 

from climate change data. Supporting numeracy skills that promote data comprehension (such as 

connecting data to current understandings, the use of benchmarks, and a tolerance for estimation 

error) can support conceptual change outcomes, particularly among people willing to engage 

with belief-discrepant evidence. This contributes to the idea that conceptual change about 

human-induced climate change is not a simple matter of presenting people with scientific 

evidence, but rather, involves engaging the learner with that information, supporting their 

comprehension skills, eliciting predictions and explicit reasoning, providing feedback, and 

attending to their openness to consider new evidence. Such skills are critical to develop scientific 

habits of mind and make meaning of information in a way that helps people make informed 

decisions that can benefit society and the environment.  
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Table 1.  
Descriptives by Condition and Intercorrelations Among Variables for the Main Analytic Sample of Undergraduate Students. 
 

 Total Control 
Estimation 

Game 

Modified 
Estimation 

Game Correlations 

 n M SD n M SD n M SD n M SD pre.kn post.kn pre.pl post.pl anx 

Pretest Knowledge 605 4.83 0.55 203 4.85 0.53 204 4.82 0.53 198 4.83 0.58 -     

Posttest Knowledge 605 4.94 0.63 203 4.81 0.62 204 5.02 0.59 198 4.97 0.67 .66*** -    

Pretest Plausibility 605 4.86 1.19 203 4.89 1.18 204 4.86 1.21 198 4.83 1.18 .58*** .55*** -   

Posttest Plausibility 605 4.9 1.28 203 4.86 1.26 204 4.99 1.23 198 4.84 1.36 .51*** .63*** .79*** -  

Mathematics Anxiety 605 2.9 1.03 203 2.93 1.02 204 2.93 1.02 198 2.85 1.05 0.04 -0.05 0.02 0.03 - 

AOT 605 4.93 0.90 203 4.91 0.93 204 4.98 0.85 198 4.9 0.92 .47*** .54*** .46*** .44*** -.13** 

Note. AOT = Actively Open-Minded Thinking. **p < .01; ***p < .001 



36 

 

 
 
Table 2. 
Effects of Experimental Conditions on Posttest Knowledge and Plausibility and Moderating Effects of Actively 
Open-Minded Thinking and Math Anxiety (N = 605). 
  

 Posttest Knowledge Posttest Plausibility Perceptions 

 
No 

Moderator 

Math 
Anxiety as 
Moderator 

AOT as 
Moderator 

No 
Moderator 

Math 
Anxiety as 
Moderator 

AOT as 
Moderator 

 β (SE) p β (SE) p β (SE) p β (SE) p β (SE) p β (SE) p 
 

Estimation Game 0.366*** 0.366*** 0.339*** 0.124* 0.123* 0.113* 

 (0.070) (0.070) (0.068) (0.058) (0.058) (0.056) 

 p < .001 p < .001 p < .001 p = .034 p = .035 p = .045 
       

Estimation Game 
+ Estimation Instruction 0.265*** 0.257*** 0.272*** 0.025 0.025 0.024 

 (0.074) (0.073) (0.068) (0.060) (0.060) (0.060) 

 p < .001 p < .001 p < .001 p = .684 p = .677 p = .687 
       

Moderator  -0.022 0.207***  -0.013 0.072~ 

  (0.045) (0.044)  (0.042) (0.038) 

  p = .620 p < .001  p = .752 p = .062 
       

Intervention * Moderator  -0.021 0.057  0.047 0.060 

  (0.070) (0.063)  (0.060) (0.054) 

  p = .762 p = .365  p = .430 p = .268 
       

Modified Intervention * 
Moderator  -0.126~ 0.201**  0.027 0.017 

  (0.069) (0.064)  (0.062) (0.060) 

  p = .067 p = .002  p = .657 p = .773 
 

Note: AOT = Actively Open-Minded Thinking. The comparison condition is the control condition in which 
participants read an expository text about the greenhouse effect. All models include pretest scores as a covariate, 
namely, posttest knowledge is adjusted for pretest knowledge and posttest plausibility is adjusted for pretest 
plausibility perceptions. All continuous variables were standardized around the mean. Standard errors are 
heteroskedasticity-robust. Boldfaced values indicate significant results for predictors. 
~p < .1; *p < .05; **p < .01;***p < .001 
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Table 3.      
Estimation Strategies Employed by Undergraduate Students While Estimating Climate Change Numbers 

Strategy 

Total 
Number of 

participants who 
reported using 

strategy 

Estimation Game 
Condition 

% in this group 
who reported 
using strategy 

Modified 
Estimation Game 

% in this group 
who reported using 

strategy z p 
      

Preregistered Strategy 
Comparisons       

Tolerance for Error / as 
Reaction to Feedback 34 5.9% 11.1% 3.72 <.001 

Flexible Rounding 0 0.0% 0.0% na na 

Benchmark (unspecified 
usage) 71 12.7% 22.1% 2.62 .004 

Exploratory Strategy 
Comparisons      

Benchmark + Extrapolation 56 15.7% 11.8% -1.03 .151 
Benchmark + Mental 
Iteration or Proportional 
Reasoning 10 1.0% 3.9% 1.97 .024 

Prior Educational 
Experiences 48 14.2% 9.3% -1.43 .077 
News or Social Media 27 8.8% 4.4% -1.71 .043 
Personal experiences 11 2.5% 2.9% 0.36 .361 

Prior Item 6 1.0% 2.0% 0.86 .195 

External Resources  11 2.0% 3.4% 0.97 .167 

Vague Guess 121 34.3% 25.0% -1.87 .031 

Nonsense  18 4.9% 4.0% 0.41 .338 
n 402 204 198 - - 
Note. Participants in the control group did not estimate numbers or complete a strategy reports, thus are 
not included here. The z and p-values were calculated based on a two-sample difference in proportions. 
Bold values are significant after Bonferroni adjusting p-values to account for the family-wide error rate 
among strategy types. 
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Table 4. 
Preregistered Research Questions, Hypotheses, and Findings. 

Research Question Hypotheses Findings 

RQ1. To what extent does 
estimation of and exposure 
to novel climate change 
data using an online 
learning intervention 
improve learners’ climate 
change knowledge and 
plausibility judgments 
compared with reading an 
expository text? 

H1. I hypothesize that people assigned to the 
intervention conditions will have greater knowledge 
at posttest when compared with people assigned to 
read an expository text. I anticipate no significant 
differences in climate change plausibility perceptions 
between the intervention groups and the comparison 
group at posttest. 

! Intervention conditions had 
significantly greater posttest 
climate change knowledge when 
compared with the control (d = 
.30, p < .001). 

! No significant differences between 
posttest plausibility perceptions 
when comparing intervention 
conditions to control conditions (p 
= .158). 

RQ2. To what extent do 
warm constructs (i.e., 
mathematics anxiety and 
epistemic dispositions) 
moderate the effects of the 
interventions on 
knowledge and 
plausibility? 

H2.1. Math anxiety: I anticipate that individuals with 
high math anxiety will benefit less from the 
mathematics skills instruction. That is, I expect that 
math anxiety will negatively moderate the effects of 
the intervention modified with estimation instruction 
when the outcome is climate change knowledge or 
plausibility perceptions. 

" Only a marginally significant 
moderating effect of mathematics 
anxiety on knowledge (p = 
.084)... 

"#$and no significant effect on 
plausibility perceptions (p = 
.877). 

H2.2. Epistemic dispositions: I anticipate that 
individuals with higher levels of Active Open-
minded Thinking (AOT) will benefit more from the 
intervention and modified intervention compared 
with the comparison condition when the outcome is 
climate change knowledge. That is, I expect that 
active open-minded thinking will positively 
moderate the effects of the intervention. I also 
anticipate that there will be a significant main effect 
of active open minded thinking on plausibility 
perceptions, but no significant interactions with the 
experimental conditions. 

!#AOT had significant main effects 
(β = 0.21, p < .001) and 
moderating effects (β = 0.20, p = 
.003) on posttest knowledge, 

"#No significant main or moderating 
effects on posttest plausibility 
perceptions (p = .266, p = .808 
respectively). 

 

RQ3. To what extent does 
enhancing the intervention 
with instruction on 
estimation strategies 
change learners’ climate 
change knowledge and 
plausibility? 

H3. I hypothesize that supplementing the 
intervention with instruction on estimation skills will 
lead learners to report more scientific knowledge 
about climate change compared with those who are 
assigned to the intervention but without estimation 
instruction. I expect no significant differences in 
climate change plausibility between these conditions. 

" No significant differences between 
the intervention group and 
modified intervention group with 
regard to posttest climate change 
knowledge (p = .180)… 

! …nor plausibility perceptions (p = 
.623). 

RQ4. Will individuals who 
are assigned to interact 
with the intervention 
supplemented with 
instruction on estimation 
strategies report using the 
emphasized estimation 
strategies? 

H4. I hypothesize that individuals who are assigned 
to the intervention supplemented with estimation 
instruction will more frequently report (a) tolerance 
for error, (b) rounding techniques, and (c) 
benchmark strategies compared with those assigned 
to the intervention without this modification. 

! Estimation instruction predicted 
significantly more frequently 
shared tolerant reactions to 
accuracy feedback (p < .001)… 

! … more frequent use of 
benchmark strategies (p = .004)… 

" … but found that no students 
reported using rounding 
techniques.#

Note. The official preregistration can be accessed using the following link: 
https://osf.io/9uh6j?view_only=d51fd61e6fa5458c82499b5dff40a6d6.  
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Figure 1 
Visual Representation of the Survey Flow, Materials, and Procedures 
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Appendix A 
Examples of The Experimental Conditions 

 
Intervention Group (Screenshots from the “Estimation Game”) 

   

Modified Intervention Group (Excerpts from estimation instruction that preceded Estimation Game) 

Sometimes people estimate everyday numbers in their head. For example, you might quickly estimate the cost of 
tax and tip in your head before ordering a meal at a restaurant. These calculations are naturally very rough and 
imprecise, and it is okay if your guess is not perfect… 
 
REFERENCE NUMBERS 
 
Numbers that you already know (reference numbers) can help you estimate numbers that you do not know. For 
example, if you know that about 300 pennies fit in a small, 8oz milk carton, you can use this information to 
estimate the number of pennies that fit in a gallon…  
 
SIMPLIFYING NUMBERS 
 
When using reference numbers, you may want to round values to make mental computation easier. For example, 
let’s estimate the population of California given that the population of Kentucky is 4.47 million. Before making 
our estimate, we first round the Kentucky population to 4 million to make the math easier, and scale this value 
according to our beliefs about the size of California compared to Kentucky. If you were to guess that California… 

Control Group (Excerpt of Expository Text adapted from Lombardi et al., 2013) 

THE ENHANCED GREENHOUSE EFFECT 
 
Many people have heard of the “greenhouse effect”, but not everyone knows what the “greenhouse effect” is 
exactly. The greenhouse effect refers to the way that certain gasses in earth’s atmosphere keep the planet warmer 
than it would otherwise be. The earth’s greenhouse effect is a natural occurrence… 

Note. All intervention texts appeared within the estimation game environment (ianthacker.com/design.html). For 
complete intervention materials, as well as survey materials, data and analysis script, see the supplemental materials 
(https://osf.io/nqbyr/?view_only=bc36d59f82424c4f8e67cfb1538afaaf). 
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Appendix B 
Estimation Strategy Usage 

 
Strategy Report Coding Scheme with Definitions and Examples. 
 

Code Definition Example 

Tolerance for 
Error 

Evidence that the individual reacted 
positively to accuracy feedback 
despite estimates that were not 
perfect or precise. 

● I knew it wasn't going to be 100% 
accurate 

● I didn’t remember all the numbers exactly 
but I made rough estimates based on what 
I did remember and just common sense 

Flexible 
Rounding  

Evidence that the individual was 
rounded numbers to make mental 
computation easier. 

● I would round numbers up or down to 
make things easier* 

Benchmark 
Estimation 
(unspecified) 

Evidence that the individual used 
the given benchmark values without 
specifying what they specifically 
did with the benchmarks. 

● I used the hints 
● I used the given information 
● I read the information above and did my 

best to estimate based on the questions 

Benchmark 
Estimation + 
Extrapolation  

Evidence that the individual used 
the given benchmark information to 
project trends to estimate the 
unknown quantities. 

● I used the data from the past to make 
educated guesses based on the trends 

● Depended on the increase or decrease 
which I would follow the trend 

● I used the bit of evidence they gave and 
extrapolated from there. 

● I took the change provided and tried to 
make an equivalent increase or decrease 
based off the information given 

● I made my increase or decrease decisions 
by aligning all my answers with the fact 
that our environment is experiencing 
Increased emission and temperatures. 
Then I tried to choose my numbers based 
on hints given. 

Benchmark 
estimation + 
Mental 
iteration or 
proportional 
reasoning 

Evidence that the individual is 
using arithmetic operations to 
estimate an unknown number (e.g., 
repeated addition or proportional 
reasoning) 

● I went off the amount of years and 
multipled (sic) 

● For questions about increase/decrease of 
greenhouse gasses, water level, etc, I 
tended to double or triple numbers from 
previous statistics. 

● I calculated the previous amount and 
subtracted. 

● I just guessed that the answer would be 
from adding it subtracting half of the 
values 
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Prior 
Educational 
Experiences 

The individual references 
information from their prior 
learning experiences to estimate or 
make sense of unknown quantities. 

● From my memory of chemistry concepts 
● i tried to remember what i learned in 

environmental sciences class 
● I just guessed based on books I've read a 

while ago 

News or 
Social Media 

Evidence that the individual drew 
from information they had learned 
from various news sources.  

● I used inferences based on what I've seen 
and heard on the news 

● knowledge I've gained through social 
media and outside of the media. 

Personal 
Experiences 

The individual references 
information from their personal 
experiences to estimate or make 
sense of unknown quantities. 

● I think the levels are rising. Based on 
experience 

● personal info I knew before 
● Personal knowledge 

Prior Item Evidence that the individual used 
information from a previous item in 
the game to estimate the given 
number.  

● I tried to use remember stats from the 
previous questions 

● I tried to choose my numbers based on 
previous questions 

External 
Resource 

Evidence that the individual used 
external resources to estimate 
quantities while answering 
questions. This includes use of a 
calculator, looking up answers or  
“Googling answers.”  

● I looked up the questions on google and 
did my research 

● Calculator 
● I use my calculator and thought of the 

object that they were using 

Vague Guess Vague guessing strategy specified 
by the participant  

● i guessed 
● I estimated most of them 
● I just used my intuition 

Nonsense Nonsense or gibberish entered to 
trick forced response options. 

● Tyijcxdhjlp ghkouff 

Note. All examples represent real excerpts from student data, unless marked with “*” which represents an 
illustrative example that was not observed. 
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